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a b s t r a c t

Magnetic domain structures are a fascinating area of study with interest deriving both from

technological applications and fundamental scientific questions. The nature of the striped magnetic

phases observed in ultra-thin films is one such intriguing system. The non-equilibrium dynamics of

such systems as they evolve toward equilibrium has only recently become an area of interest and

previous work on model systems showed evidence of complex, slow dynamics with glass-like

properties as the stripes order mesoscopically. To aid in the characterization of the observed phases and

the nature of the transitions observed in model systems we have developed an efficient method for

identifying clusters or domains in the spin system, where the clusters are based on the stripe

orientation. Thus we are able to track the growth and decay of such clusters of stripes in a Monte Carlo

simulation and observe directly the nature of the slow dynamics. We have applied this method to

consider the growth and decay of ordered domains after a quench from a saturated magnetic state to

temperatures near and well below the critical temperature in the 2D dipolar Ising model. We discuss

our method of identifying stripe domains or clusters of stripes within this model and present the results

of our investigations.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

The properties of ultra-thin magnetic thin films have been the
subject of study for sometime, but new experimental techniques
to create and probe such systems has intensified the efforts of
researchers to understand these systems in recent years [1–3].
Among the more interesting properties is the existence of stripe
phases. These phases are the result of the competition between
short-range exchange interactions and long-range, dipole–dipole
interactions. Such pattern formation is of great interest as the
foundations of future potential magnetic storage devices are
based in part on the properties of such materials [4]. However, the
phenomena is much more general and similar patterns have been
observed in such diverse systems as Langmuir monolayers,
diblock co-polymers, and type 1 superconductors [5]. More
recently similar competition between long-range, dipole–dipole
and short-range interactions has been seen in model systems as
an essential control mechanism in the self-assembly process for
nano-structures [6].

The static, equilibrium properties of ultra-thin magnetic films
have been well studied experimentally [2] and the dipolar Ising
model has been considered extensively in efforts to explain these
properties [7]. However, a better understanding of the stability and
dynamics of the domain structures in these materials is still
needed and is highly desirable given that they determine many of

the technologically important properties of these materials. It is
widely known that the static and dynamic properties of a material
can sometimes be determined by clusters or domains within the
material. Such is the case the 2D Ising model with short-range
interactions only [8], where the explicit connection between the
geometric clusters of spins in the same state to the physical
clusters which are characteristic of the critical phenomena in the
system, has been formally established [9,10]. This connection has
been exploited to gain a better understanding of the dynamics of
the short range interaction Ising spin system, the nature of the
phase transition, and also to develop acceleration algorithms for
Monte Carlo simulations, which have greatly expanded the utility
of the model [11,12]. A similar connection has yet to be established
for the dipolar Ising model. Given the potential utility of the dipolar
Ising model, and given the very slow dynamics that have observed
in simulations to date, such a connection and the development of
acceleration algorithms would be quite useful. The methods and
results presented in this work are an initial step toward the
development of such an algorithm and at the same time provide
insight in to the dynamics of the dipolar Ising model itself.

1.1. The dipolar Ising model

The Hamiltonian for the dipolar Ising model in reduced units
can be written as

H ¼ �J
X

hiji

sisj þ g
X

i;j

siGijsj þ H
X

i

si, (1)
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where hi; ji in the first term indicates a sum over all pairs of
nearest neighbor spins i, j, si ¼ �1 is the magnetic moment at site
i and J is the strength of the exchange interaction. The second term
is a long-range dipole–dipole interaction of strength g and the
sum is over all pairs of spins. The final term treats the interaction
with an applied field, H, which we do not consider in this work.
The system is assumed to be infinite, but restricted to states which
are periodic. Periodic boundary conditions are therefore used to
treat the exchange interaction and Ewald sums are used to
account for the long-range nature of the dipolar interaction. The
exact form of Gij and other details related to the Ewald summation
are as given by Ref. [13]. In this paper we assume the spins are
perpendicular to the plane of the film.

1.2. Previous work

The equilibrium properties of dipolar Ising model have been
studied extensively and a review of this work can be found in
De’Bell et al. [7] and the works cited therein. In the work
presented here the ratio of J to g has been fixed at J=g ¼ 8:9, which
has been shown previously to lead to an ordered ground state, in a
monolayer, of stripes of width eight spins parallel to a lattice axis
[14]. The nature of this transition is still the subject of some
debate, much of which centers on the characteristics of the
equilibrium phase just above the critical temperature and the
comparison to experimental results.

In contrast the non-equilibrium dynamics of the dipolar Ising
model have not been so extensively considered. The earliest work
considered the relaxation of the magnetization from the saturated
magnetic state, ðfsig ¼ 1Þ, after a quench toward equilibrium at a
temperature below Tc. Sampaio et al. [15] found that depending
on the relative strengths of the dipolar and exchange interactions,
one can have either exponential or power-law relaxation. The time
frame considered was very short, typically on the order of 5000
Monte Carlo steps (MCS) at most, and the relative strength of the
interactions was such that the stripe width in the ground state
was limited to at most four spins. Rappoport et al. [16] reported
similar results on larger lattices, but with a truncated dipolar
interaction.

The phenomena of aging in the dipolar Ising model was
considered in a number of articles, all of which considered small
stripes of width one or two spins. By measuring the spin auto-
correlation function,

Cðt; twÞ ¼
1

N

X

i

hsiðt þ twÞsiðtwÞi, (2)

Toloza et al. [17] were able to observe aging, the nature of which
was dependent on the relative strength of the interactions.
Stariolo and Cannas [18] expanded upon this earlier work to
show how Cðt; twÞ crosses over from logarithmic decay to algebraic
decay as the ground state stripe width increases. Gleiser et al. [19]
and Gleiser and Montemurro [20] measured the time evolution of
the domain size of stripes of width one and two spins and
hypothesized that the differences in the nature of the dynamics
was related to the existence of metastable states. All of these
studies were concerned with short to intermediate time scales (up
to t ¼ 106) and only for the case of small stripe widths.

Bromley and his co-authors [21,22] considered the dynamics of
systems with a larger stripe width (eight spins) during a quench
from the saturated magnetic state toward equilibrium near the
critical temperature. They were able to establish the existence and
character of three relaxation regimes. They considered results
from simulations on the order of at most 1,000,000 MCS, to
develop a general understanding of the relaxation in their system
in each of three regimes that they identified. At very early times

they found that the dynamics of the system was characterized by
the nucleation of small islands, where the spins are oriented in the
direction opposite to the initial saturation direction. As these
small islands grew the net magnetization approached zero. In the
second regime there remained a small remnant magnetization.
This remnant magnetization decays at a rate which is much
slower than that in the first regime. In the final regime, at late
times, they found that the islands become elongated and arranged
into regions which manifest the stripe pattern of the expected
equilibrium phase. However, these local regions did not yet share
a common orientation and hence the system was not completely
in the smectic phase. To support this conjecture, they provided
three snapshots of an extended simulation that showed single
spin configurations at times t ¼ 300;000, 600;000 and 900;000,
where by hand they determined the regions of local smectic
ordering. Their results were consistent with those of Desai and
Roland and Sagui and Desai who had conducted similar studies
using Langevin dynamics for a model with a continuous uniaxial
‘‘spin’’ variable, with an additional significant difference being the
use of open boundaries [23,24].

Mu and Ma [25] considered a dipolar model system under
going a quench from a random state. They discussed qualitatively
the early stages of the relaxation to equilibrium, and felt that the
depth of the quench fundamentally changed the nature of the
relation process. Their simulations were run for times on the order
of 100,000 MCS for stripes of various width from approximately
one to nine spins. For a deep quench they claimed that the
labyrinth structure they observed became frozen due to the
frustration induced by the competition between the short- and
long-range interactions.

It is the late stage relaxation identified by Bromley and Mu and
Ma, but which was not considered in depth due to computer time
constraints, that we wish to address in this article. We also wish to
consider ground state stripes of the size treated by Bromley and
by Mu and Ma, rather than the very small stripes considered in the
other works discussed above. We have extended the length of
simulation by at least a factor of 10 compared to previous studies,
and have recorded the spin configurations every 1000 MCS [26].
Our simulations have a run length of between 2 million and 14
million Monte Carlo time steps, depending on the temperature of
the simulation. The longest of our simulations required over 30
days to run using a 4 way parallel code on 4 CPUs. Thus this single
simulation required 120 days of CPU time. Because of this huge
computational demand we have only considered a few tempera-
tures and conducted two sets of simulations at each temperature.
However, even this small number of simulations required over 4
years of CPU time.

While we will be drawing analogies between the standard 2D
Ising model and the dipolar Ising model, one must remember that
unlike the standard 2D Ising model, the ordering observed in the
dipolar Ising model is a mesoscopic ordering of the stripes and not
a microscopic ordering of the spins themselves. Therefore one
must be cautious about characterizing the transition in terms of
spin properties rather than in terms of properties of the stripes.
For stripes of small width this can be a serious concern as the
spins fluctuations and the stripe fluctuations can occur on similar
length scales. For example, if one were to consider a system with
stripes of width h ¼ 2, a spin flip would be equivalent to half the
width of a stripe and even in the ground state of the system 100%
of the spins would lie on a stripe boundary. If instead one where to
consider a system with a ground state of stripes of width h ¼ 8 (or
greater), then only 25% of spins lie on a boundary in the ground
state and a single spin flip is no longer comparable to the
excitation required to disorder the mesoscopic stripe order. This is
also important as the smallest of ground state stripe widths seen
experimentally is still quite large, typically on the order of
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