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a b s t r a c t

In this paper we theoretically discuss the magnetocaloric effect in the doped compound

ðGd1�cTbcÞ5Si2Ge2. To this end we use a model Hamiltonian of localized interacting magnetic moments

including the magnetoelastic coupling and the Zeeman interaction. In order to treat the two body

interaction we use an extension of the mean field theory in which is considered the type of magnetic

rare earth ions is occupying the neighborhood of a given site. The obtained results of the magnetocaloric

potentials are in very good agreement with the available experimental data.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

The magnetocaloric effect is characterized by the isothermal
entropy change DSiso and by the adiabatic temperature change
DTad under magnetic field variation. It is well know that the
temperature and the magnitude of the peaks of the magnetoca-
loric potentials DSiso and DTad can be tuned by applying pressure
[1–3] and doping [4,5]. A lot of experimental data of the
magnetocaloric potentials in doped compounds can be found in
the literature [6,7]. However, only a few papers theoretically
discuss the magnetocaloric effect in doped compounds [8–10]. In
the theoretical description of the magnetocaloric effect in doped
compounds, it is necessary to consider the nature of the host and
the impurities. For instance, rare earth based compounds doped
with non-magnetic impurities such as R5Si2ðGe1�cMcÞ2, where R is
a rare earth element and M is a non-magnetic element may be
described by a Heisenberg-like Hamiltonian with an effective
exchange interaction parameter renormalized by the disorder
introduced into the electron gas. This simplification in the
theoretical description of the magnetocaloric effect in
R5Si2ðGe1�cMcÞ2 may be introduced because the magnetism in
these doped compounds comes entirely from the rare earth ions
and the impurities enter at the non-magnetic sublattice. On the
other hand the theoretical description of the magnetocaloric effect
in doped compounds with more than one type of magnetic ions

such as ðRa
1�cRb

c Þ5Si2Ge2, where Ra and Rb are rare earth elements is
much more complex, because the impurities are introduced at the
rare earth magnetic sublattice.

In this work we are only interested in the theoretical
description of the magnetocaloric effect in the rare earth doped
compound ðGd1�cTbcÞ5Si2Ge2, which undergoes a first order phase
transition. To this end we use a Heisenberg-like Hamiltonian
including the magnetoelastic coupling and the Zeeman interac-
tion. The great difficulty to describe the magnetocaloric effect in
this doped compound is associated with the existence of disorder
in the rare earth sublattice. The effect of the disorder on the
magnetocaloric effect in ðGd1�cTbcÞ5Si2Ge2 could be treated by
improving the classical Monte Carlo simulation [11,12] to
incorporate the nature of the first order phase transition observed
in this doped compound. However, such an improvement is not so
easy to be done. Besides, due to the great computer time needed
to perform Monte Carlo simulation, it is interesting to search for
alternative methods of calculations to deal with this type of
disorder.

Hence, in order to treat this kind of disordered problem and get
an insight in the physical mechanisms involved in the magneto-
caloric effect in the doped compound ðGd1�cTbcÞ5Si2Ge2, we adopt
in this work an extended mean field theory in which the type of
rare earth ions is explicitly considered in the two body interaction.
Our theoretical calculations of the magnetocaloric potentials
are in a very good agreement with the available experimental
data. Moreover, our calculations predict a systematic behavior
of the magnetocaloric potentials in the doped compound
ðGd1�cTbcÞ5Si2Ge2 with increasing Tb concentration. Based on this
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prediction, we also propose composite materials made up of some
samples of the doped compound ðGd1�cTbcÞ5Si2Ge2 with different
Tb concentration, which exhibit the table-like behavior, i.e., an
almost constant value of the magnetocaloric potential DSiso in a
wide range of temperatures.

2. Formulation

In order to discuss the magnetocaloric effect in the doped
compound ðGd1�cTbcÞ5Si2Ge2 we start with the following Hamil-
tonian:

H ¼ �
X

i;l

Jab
0
~J

a

i �
~J

b

l �
X

i;j

Jab
1 ½
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i mB
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In this Hamiltonian, the first term describes the interaction
between rare earth magnetic moments, where Jab

0 (a; b ¼ Gd or
Tb) is the exchange interaction parameter and ~J

a

i (~J
b

l Þ is the total
angular momentum of the rare earth ions. The second term
somehow describes the magnetoelastic interaction where Jab

1 is a
model parameter [13]. The last term represents the Zeeman
interaction between the rare earth angular momentum and the
external magnetic field (B), where ga

i is the Land�e factor. In the
mean field approximation, the previous Hamiltonian can be
explicitly written in the form H ¼HGd

1 þHTb
2 , where
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Here HGd
1 describes an effective subsystem of Gd ions in which

the exchange interaction between magnetic moments depends
whether Gd or Tb ions are in the neighborhood of a given site.
Similarly HTb

2 describes a subsystem of Tb ions, in which the
exchange interaction between magnetic moments depends on the
type of ions are occupying the neighboring sites. In these
Hamiltonians ya ða ¼ x; y; zÞ are the angles between the applied
magnetic field and the crystallographic axes x, y and z. The
parameters ~J

ab

0 ¼Jab
0 Zab, and ~J

ab

1 ¼Jab
1 Zab ða; b ¼ Gd; TbÞ are

effective exchange interaction parameters where Zab represents
the number of neighboring ions. For instance, ZGdTb represents the
number of Tb ions are in the neighborhood of a site occupied by
Gd ions.

The mean values /Ja
aS (a ¼ Gd or Tb and a ¼ x; y; z) can be

obtained by the following equation:

/Ja
aS ¼

P
j/C

a
j jJ

a
ajC

a
j S e�bEa

jP
je
�bEa

j

; ð4Þ

where b ¼ 1=kBT and kB is the Boltzmann constant. Ea; jCaS are
the energy eigenvalues and eigenvectors of the mean field
Hamiltonians Ha

1. The total magnetization of the compound,
ðGd1�cTbcÞ5Si2Ge2, can be calculated by

MðT;B; cÞ ¼ ð1� cÞMGdðT;B; cÞ þ cMTb
ðT;B; cÞ;

where MaðT;B; cÞ ¼ gamB/JaS (a ¼ Gd or Tb) is the magnetization
of the effective system of Gd or Tb ions described by the effective
Hamiltonian HGd

1 or HTb
2 . In the same way, the total entropy in

the compound, ðGd1�cTbcÞ5Si2Ge2 can be calculated by

SðT;B; cÞ ¼ ð1� cÞSGdðT;B; cÞ þ cSTb
ðT;B; cÞ;

where SaðT;B; cÞ (a ¼ Gd or Tb) given by

SaðT;B; cÞ ¼ Sa
magðT;B; cÞ þ Sa

latðc; TÞ þ Sa
elðTÞ ð5Þ

represents the total entropy of the subsystem described by the
effective Hamiltonian Ha

1. In Eq. (5) Sa
el ¼ gaT, where ga is the

Sommerfeld coefficient, represents the electronic entropy. Sa
mag
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is the magnetic entropy, where Nm ¼ 5 represents the number of
magnetic ions per unit formula. Sa

lat given, in the Debye
approximation, by

Sa
latðT;B; PÞ ¼ Ni �3Rln 1� e�Y

a
D=T Þ þ 12R
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is the crystalline lattice entropy, where Ni ¼ 9 represents the
number of ions per unit formula.

3. Results

In order to apply the present model to calculate the
magnetocaloric effect in ðGd1�cTbcÞ5Si2Ge2, we have to fix a set
of model parameters. The total angular momentum and the Land�e
factors were taken form Hund’s rule as JGd ¼ 7

2, gGd ¼ 2 and JTb ¼ 6,
gTb ¼ 3

2. The Sommerfeld coefficient and the Debye temperature
were taken as gGd ¼ gTb ¼ 5 ðmJ=mol K2

Þ and YGd
D ¼ YTb

D ¼ 200 K.
The number of neighbor ions were taken as ZGdGd ¼ 10 and ZGdTb ¼

0 for c ¼ 0 and ZTbTb ¼ 10 and ZTbGd ¼ 0 for c ¼ 1. For intermediate
concentrations we take ZGdGd ¼ ð1� cÞ10, ZGdTb ¼ 10c, ZTbTb ¼ 10c

and ZTbGd ¼ ð1� cÞ10. The bare values of the exchange interaction
parameters were taken as JGdGd

0 ¼ 0:57 mev,
JGdGd

1 ¼JGdTb
1 ¼ 0:025 meV, JTbTb

0 ¼ 0:08 meV and JTbTb
1 ¼ 0.

These parameters were taken in order to reproduce the experi-
mental data of the magnetic ordering temperatures in the pure
compounds Gd5Si2Ge2 and Tb5Si2Ge2. For intermediate concentra-
tions the exchange interaction parameters JGdGd

0 and JTbTb
0 should

be self consistently calculated in order to incorporate the changes
in the electron gas due to the presence of impurities. However,
such a calculation is much complex and is not in the scope of the
present work. Here, for the sake of simplicity, we just consider a
very smooth linear dependence of these parameters when we go
from c ¼ 0 to 1. Moreover, the effective exchange interaction
parameters ~J

ab

0 and ~J
ab

1 defined as ~J
ab

0 ¼Jab
0 Zab, and ~J

ab

1 ¼

Jab
1 Zab ða; b ¼ Gd; TbÞ already depend on the impurity concentra-

tion via the number of neighboring ions. Using these model
parameters, we solve the magnetic state equations for several
values of the impurity concentration.

In Fig. 1, we plot the temperature dependence of the
magnetization in ðGd1�cTbcÞ5Si2Ge2 calculated in the absence of
an external magnetic field. It can be observed from this figure that
Gd5Si2Ge2 undergoes a first order phase transition around 275 K.
As the Tb concentration is increased the magnetic ordering
temperature becomes smaller and the first order phase
transition becomes weak. In Fig. 2, we plot the temperature
dependence of the total specific heat capacity in ðGd1�cTbcÞ5Si2Ge2

calculated in the absence of an applied magnetic field. Notice that
our calculations are in good agreement with the available
experimental data [4] for c ¼ 0. For the remaining
concentrations are necessary further experimental data to
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