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The aim of the present work is the numerical computation of the average magnetic induction in the

cross-section of a non-oriented 3% Si–Fe sheet by solving the magnetic diffusion equation. Jiles’ dynamic

model is used to describe the magnetization law. The obtained results are compared with those of the

measurements carried out for frequencies of 0.5, 50, 200 and 500 Hz. A satisfactory agreement is

obtained between both types of results.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Electrical systems are basically made from ferromagnetic
materials. These materials are exploited in the form of sheets to
minimize the intensity of eddy currents. The most used alloy is
mainly made up of iron and a small percentage of silicon that does
not exceed 5% [1,2]. Several approaches have been suggested to
study the magnetic phenomena in silicon–iron alloys. We
mention for instance those of Bertotti [3], Bertotti and Mayergoyz
[4], and Zirka et al. [5,6]. To optimize the sheet characteristics of
silicon–iron alloys, such as reduction in magnetic losses and
taking into account the skin effect, it is necessary to compute the
magnetic field and the distribution of the magnetic flux density in
the sheet cross-section in the dynamic mode. To do so, we chose
to solve the diffusion equation resulting from the combination of
Maxwell–Faraday and Maxwell–Ampere equations with Ohm’s
law equation [7–9]. To take into account the nonlinearity of the
ferromagnetic material it is necessary to associate the diffusion
equation with the magnetization law. The latter is represented by
Jiles’ dynamic model [10,11]. This model has the advantage of
considering excess losses generated by the change in the

configuration of magnetic domains during the magnetization
process. The sheet under consideration is subjected to a sinusoidal
surface field Hs. As modelling results we represent the hysteresis
loops B(Hs) for frequencies:0.5, 50, 200 and 500 Hz. The obtained
results are compared with those determined by measurements
[7,12]. The test bench used to obtain the measurements data is
presented in Appendix A.

2. Magnetic field computation model

Let us suppose the sheet under consideration is placed in the
(oxyz) frame of reference. It is submitted to a magnetic field Hs

applied to its surface. The sheet cross-section is located in the
(oxy) plane (Fig. 1).

The magnetic field H and the induction B are perpendicular to
the cross-section: H=Hz(x,y,t) and B=Bz(x,y,t). The corresponding
two-dimensional diffusion equation is

@2Hzðx; y; tÞ

@x2
þ
@2Hzðx; y; tÞ

@y2
¼ s @Bzðx; y; tÞ

@t
ð1Þ

where s is the sheet’s electrical conductivity. For its resolution,
Eq. (1) simultaneously requires a discretization in time and space
[13,14]. To do so, the finite elements method is used for the
discretization in space and the Crank–Nicholson method for time
discretization. The resulting set of matrix equations to be solved
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can be written as

ð1� bÞSHþTjtþð1�bÞtþbSH � Tjt � P¼ 0 ð2Þ

where 0rbr1.
In Crank–Nicholson’s algorithm we take b=0.5.
S, T and P are matrices whose elements are

Se
ij ¼

Z
Oe

~rNe
i
~rNe

j dO ð3Þ

Te
i ¼ s

Btþð1�bÞt � Bt

Dt

Z
Oe

Ne
i dO ð4Þ

Pe
i ¼

Z
Oe

Ne
i

@H

@n
dG ð5Þ

The indices i and j vary from 1 to NN, where NN is the total
number of nodes of the finite elements mesh. H is an unknown
vector giving the magnetic field values at the mesh nodes of the
sheet cross-section. This vector is obtained by solving Eq. (2).

Ni
e(x,y) are polynomial interpolation functions at the nodes of

each element of the mesh with surface Oe, Dt is the time step, n is
the normal unit vector to the domain of study. To compute the
distribution of magnetic field distribution at each time step, we
used the Newton–Raphson algorithm. Therefore, Eq. (2) repre-
sents the residue vector R. Its Taylor series expansion near Hi�1,
limited to the first order, gives

RðHi�1þDHiÞþ
@R

@H i�1DHi ¼ 0
��� ð6Þ

where Hi�1 is the field vector value at iteration i�1. DHi is the
field vector variation at iteration i.

Eq. (6) can be written as follows:

�
@R

@H i�1DHi ¼ RðHi�1Þ

��� ð7Þ

The resolution of this equation gives DHi. The field’s vector
value Hi, at iteration i, is obtained as

Hi ¼Hi�1þDHi ð8Þ

The derivative @R=@H is expressed as follows:

@R

@H
¼ ð1� bÞSþ

@T

@H tþð1�bÞt ¼ ð1� bÞSþT 0
�� ð9Þ

where the elements of matrix T0 are given by

T 0eij ¼
s
Dt

Btþð1�bÞt � Bt

Htþð1�bÞt � Ht

Z
Oe

Ne
i Ne

j dO ð10Þ

3. Magnetization law model M(H)

The magnetic hysteresis model chosen for this work is Jiles’
dynamic model applied to conducting materials [10,11]. The

model is expressed as a function of the differential susceptibility
as follows:

kd� a Man �Mþkdc
dMan

dHe

� �� �
dM

dH

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}1

� Man �Mþkdc
dMan

dHe

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}1

þ
m0d2

12r
dH

dt

� �
dM

dH

� �2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}2

þ
m0GdwH0

r

� �1=2 dH

dt

� �1=2 dM

dH

� �3=2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}3

¼ 0

ð11Þ

To determine Jiles’ parameters k, a, c and a we used an iterative
method as detailed in [15]. d represents a factor that is equal to
71. d=1 for dH/dt40 and d=�1 for dH/dto0. Man is the
anhysteretic magnetization whose expression can be chosen in
accordance with the model [12,16]. m0 is the vacuum permeability.
r is the materials electrical resistivity. d and w are the thickness
and width of the sheet, respectively; G=0.1356 [3]. H0 is the
magnetic field characteristic of the material microstructure and
will be detailed in Section 4. Model (11) describes the dependence
of the hysteresis on the frequency. It is composed of three terms:
term 1 takes account of hysteresis losses, term 2 takes into
account eddy current losses and term 3 considers excess losses.
The last term is a consequence of wall movements between
magnetic domains. It was treated in detail by Bertotti [17–19].

4. Determination of the parameter H0

The parameter H0 results from the theory of magnetic objects
developed by Bertotti on fine grain materials [17–19]. In these
materials, the coercive field fluctuations are controlled by grain
size, each grain being considered as a magnetic object. Thus, we
assume that the material cross-section is composed of N0

magnetic objects and the distribution of local coercive fields of
different magnetic objects is flat, and has a constant density value
1/H0. Hence, H0 is the average minimum separation between
different local coercive field values [18]. It is a field characteristic
that determines the applied field ability to increase the number of
effective active magnetic objects with an increase in magnetizing
frequency [17]. It is very sensitive to the type of material. H0 can
easily be connected to the quasi-static macroscopic coercive field
Hc, which is associated with the maximum magnetization Imax(T)
in the hysteresis loop [18,19]:

H0 ¼
2s2/ISSHc

SImax
ð12Þ

/ISS is the proper value of saturation magnetization. For a non-
oriented grain sheet /ISS=1.7 T. s represents the grain size and S

the sheet cross-section.

5. Results and discussion

The ferromagnetic sheet chosen to analyze the magnetic field
whose model results from the combination of Eqs. (7), (8) and (11)
is similar to the one given in [7,12]. The data in this application are
as follows: d=0.5 mm, w=30 mm, r=45�10�8Om, s=60mm,
Imax=1.5 T, H0=0.03, a=130.22 A/m, k=56.855 A/m, a=1.69�
10�04, c=8.547�10�03.

The finite elements analysis of the magnetic field in the sheet
cross-section is carried out according to the flowchart presented
in Fig. 2. Due to symmetry, only a quarter of the sheet cross-
section needs to be analyzed (Figs. 1 and 3). The resulting mesh
consists of 40 elements and 31 nodes. Dirichlet’s non-
homogeneous status is applied on the G1 boundary (Fig. 3),
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Fig. 1. Sheet geometry.
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