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a b s t r a c t

Algebraic soft-decision Reed–Solomon (RS) decoding algorithms with improved error-correcting

capability and comparable complexity to standard algebraic hard-decision algorithms could be very

attractive for possible implementation in the next generation of read channels. In this work, we

investigate the performance of a low-complexity Chase (LCC)-type soft-decision RS decoding algorithm,

recently proposed by Bellorado and Kavčić, on perpendicular magnetic recording channels for sector-

long RS codes of practical interest. Previous results for additive white Gaussian noise channels have

shown that for a moderately long high-rate code, the LCC algorithm can achieve a coding gain

comparable to the Koetter–Vardy algorithm with much lower complexity. We present a set of numerical

results that show that this algorithm provides small coding gains, on the order of a fraction of a dB, with

similar complexity to the hard-decision algorithms currently used, and that larger coding gains can be

obtained if we use more test patterns, which significantly increases its computational complexity.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

Reed–Solomon (RS) codes and algebraic hard-decision decod-
ing algorithms are the current de facto standard for magnetic
recording systems. The development of algebraic soft-decision
decoding algorithms for RS codes, such as the Guruswami–Sudan
(GS) and the Koetter–Vardy (KV) algorithms [1,2], opened up the
possibility of using soft-decision decoding in future generations of
read channels to obtain improved performance without having to
change the codes. Although they provide significant coding gains
over hard-decision decoding algorithms, the main drawback is
that the cost in terms of computational complexity is prohibi-
tively high. A large body of work has been quickly assembled on
ways to further improve their coding gain and on reducing the
overall decoding complexity [3–5]. A recent example of such work
is a low-complexity Chase (LCC)-type soft-decision decoding
algorithm, proposed by Bellorado and Kavčić, which utilizes a
re-encoding technique [4] and a simplified factorization method
to reduce complexity while using a Chase algorithm to enhance
performance.

The LCC algorithm is a symbol-level interpolation-based soft-
decision list decoding algorithm implemented in a computation-
ally efficient manner. By sorting the received symbols by their
reliability, the LCC algorithm divides the received vector into two
disjoint parts, namely a set of common interpolation points and a
set of uncommon elements or test patterns used in the Chase

algorithm. These test patterns are generated using the channel
soft information to identify the least reliable positions, and
generate a set of bivariate polynomials, which produce a
corresponding list of candidate message polynomials. After
calculating the product of the reliabilities of the symbols in each
candidate codeword in the list, the one with the largest value is
chosen as the correct codeword.

In this work, we investigate the performance of the LCC
algorithm on perpendicular magnetic recording channels. The
paper is organized as follows: Section 2 reviews algebraic soft-
decision decoding algorithms, such as the GS and KV algorithms,
and the LCC algorithm is introduced in Section 3. In Section 4, we
investigate the performance of a perpendicular magnetic record-
ing system using the LCC algorithm to decode a sector-long RS
code.

2. Algebraic soft-decision decoding algorithms

Let RS(n, k) denote an RS code with length n, and dimension k,
over GF(2q). The transmitted messages m ¼ (m0, m1,y, mk�1) are
expressed in polynomial form as

mðxÞ ¼ m0 þm1xþm2x2 þ � � � þmk�1xk�1 (1)

and the RS codewords c are generated using evaluation mapping,
i.e.,

c ¼ ðc0; c1; . . . ; cn�1Þ ¼ ðmða0Þ; . . . ;mðan�1ÞÞ, (2)

where a is a primitive element of GF(2q).
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2.1. Guruswami–Sudan algorithm

The GS algorithm [1] is an interpolation-based list decoding
algorithm, which finds a bivariate polynomial with minimal
(1, k�1)-weighted degree over the polynomial ring GF(2Q)[x, y]
passing through N interpolation pairs with a given positive integer
multiplicity, given by

Q ðx; yÞ ¼
X1
a¼0

X1
b¼0

qa;bxayb 2 GFð2Q
Þ½x; y�: (3)

The (u, v)th Hasse derivative of polynomial Q(x, y) is defined as

Dðu;vÞH ½Q ðx; yÞ� ¼
XdegxðQ Þ

i¼u

XdegyðQ Þ

j¼v

i

u

� �
j

v

� �
qi;jx

i�uyj�v (4)

and can be used to verify that the polynomial has a zero with multi-
plicity l at a certain pair (x, y) if the condition DH

(u, v)[Q(x, y)]�0 at
(u, v), for 0pu+vol is satisfied.

After factorization, the algorithm identifies all the factors of
the form (y�mi(x)) with degree of x less than k [1]. These factors
generate the list of all candidate message polynomials and the
corresponding codewords. The major limitation of this algorithm
is that the multiplicities of each interpolation pair are the same,
and when we increase the multiplicity, the overall complexity
goes up by a factor of N.

2.2. Koetter–Vardy algorithm

Koetter and Vardy proposed a method for using the reliability
matrix to make an optimal multiplicity assignment. Instead of simply
assigning the same multiplicity for each interpolation pair, the KV
algorithm uses different multiplicities. From the channel output
information, the detector generates a 2q

�n reliability matrix, and the
KV algorithm converts its entries into non-negative integers, forming
a 2q
�n multiplicity matrix using a greedy iterative algorithm [2].

Given a positive integer for the total multiplicity s defined as

s ¼
X2q
�1

i¼0

Xn�1

j¼0

li;j (5)

the interpolation step constructs the bivariate polynomial passing
through all the pairs with multiplicity li,jX1. The root finding
algorithm [6] factors the interpolation polynomial and gets all the
factors of the form (y�mi(x)) with degmiðxÞ

ok.
A simplified interpolation technique can be used to reduce the

total number of interpolation pairs using a re-encoding method [4].

3. Low-complexity Chase-type decoding algorithm

The LCC algorithm for decoding RS codes was proposed in
Ref. [5] and its performance on additive white Gaussian channels
was shown to be similar to the KV algorithm with a complexity
comparable to classical hard-decision decoding algorithms.

The algorithm can be informally described as follows. Let an
RS(n, k) codeword c be transmitted through a channel and
consider a channel detector which computes a 2q

�n reliability
matrix

Q
whose entries pi, j are the symbol’s soft information. Let

us denote
Q

(a, j) as the entry in the jth column of
Q

indexed by
aAGF(2q). From the reliability information, hard-decision vectors

yHD ¼ ðyHD
0 ; . . . ; yHD

n�1Þ and y2HD ¼ ðy2HD
0 ; . . . ; y2HD

n�1 Þ

can be generated as follows:

yHD
i ¼ argmaxa2GFð2q

Þ

Y
ða; iÞ, (6)

y2HD
i ¼ argmaxa2GFð2q

Þ;aayHD
i

Y
ða; iÞ. (7)

Using yHD, y2HD and
Q

, we calculate the figure-of-merit

gi ¼
maxa2GFð2q

Þ;aayHD
i

Q
ða; iÞ

maxa2GFð2q
Þ

Q
ða; iÞ

p1. (8)

This is a measure of the confidence in the hard-decision for that
particular symbol. For giE1, it is very likely that an error may have
occurred. The LCC algorithm sorts all the gi’s, and segments the
coordinate positions into two parts by selecting Z5n coordinates
with the largest gi’s as the uncommon part I ¼ {i1,y,iZ}, and Ī ¼

f0; . . . ;n� 1g=I as the common part composed by the remaining
more reliable positions. The LCC algorithm forms test vectors
equivalent in all coordinate positions except the least reliable
ones, where there are two hard-decision choices at each position.
Thus, the algorithm will form a test set of cardinality
2Z ¼ card(2|I|).

3.1. Complexity reduction

The LCC algorithm utilizes a re-encoding procedure to reduce
complexity by ‘‘zeroing-out k entries’’ [5]. Let y ¼ c+e be any test
vector, where e is an error vector, and let J contain the k most
reliable positions. We can use erasure decoding to find a
codeword

c ¼ ðc0;c1; . . . ;cn�1Þwith ci ¼ yi for 8i 2 J

and add it to y to get a new test vector with these k most reliable
positions equal to zero.

In our work, since we use the evaluation-map encoding
method, the erasure decoding is implemented by Lagrange
interpolation. With JCI being ‘‘zeroed-out’’, the complexity of
the interpolation of the common part is significantly reduced.

3.2. Polynomial interpolation and factorization

The interpolation step generates polynomials Q(x,y) with
degy(Q)p1, which can be expressed as [5]

Q ðx; yÞ ¼ qz̄ðxÞvðxÞ þ yqzðxÞ, (9)

where v(x) ¼
Q

iAJ(x�xi); thus the polynomial Q(x,y) passes
through the (xi,0)’s and Q(xi,0) ¼ 0. If the root of Q(x,y) ¼ 0 is
m(x), then Q(x,m(x)) ¼ 0, and

mðxÞ ¼ qz̄ðxÞvðxÞ=qzðxÞ. (10)

3.3. Algorithm analysis

The multiplicity matrix L used by the LCC algorithm is a
symbol-level matrix with only one entry li,j ¼ 1 per column and all
the other entries being zero. The cost of decoding with such a
multiplicity matrix is

C ¼
1

2

X2q
�1

i¼0

Xn�1

j¼0

li;jðli;j þ 1Þ ¼ n: (11)

For a long high-rate code, 3olimk!n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð8n=k� 1Þ

p
o4, and

degy(Q) is given by [4]

dy ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð8C=k� 1Þ

p
2

$ %
� 1 ¼

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð8n=k� 1Þ

p
2

$ %
�1 ¼ 1.

(12)
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