

Available online at www.sciencedirect.com

Journal of Magnetism and Magnetic Materials 320 (2008) 2079-2082

www.elsevier.com/locate/jmmm

Magnetic properties, microstructure, and phase evolution of Pr_xFe_{bal} . Ti_vB_{20-x} (x = 4-9; y = 2.5-5) nanocomposites

C.H. Chiu^a, H.W. Chang^{a,b,*}, C.W. Chang^a, W.C. Chang^{a,**}

^aDepartment of Physics, National Chung Cheng University, Taiwan, ROC ^bInstitute of Physics, Academia Sinica, NanKang, Taipei, Taiwan, ROC

Received 22 November 2006 Available online 25 March 2008

Abstract

Magnetic properties, microstructure, and phase evolution of Pr lean and boron-enriched Pr_xFe_{bal} . Ti_yB_{20-x} (x=4-9; y=2.5-5) melt-spinning ribbons with nanostructures have been investigated. Based on thermal magnetic analysis (TMA), for y=2.5, two phases, namely $Pr_2Fe_{14}B$ and α-Fe, were found for ribbons with x=9, while additional two metastable phases, $Pr_2Fe_{23}B_3$ and Pr_3B , existed for x=4, 7 and 8. With the decrease of Pr content, the remanence increases but coercivity decreases. The optimal properties of $B_r=9.5$ kG, ${}_{i}H_c=10.7$ kOe, and $(BH)_{max}=17.8$ MG Oe are achieved in Pr_9Fe_{bal} . $Ti_{2.5}B_{11}$ nanocomposites. On the other hand, higher Ti substitution for Fe in Pr_7Fe_{bal} . Ti_yB_{13} ribbons could refine the grain size and suppress the metastable $Pr_2Fe_{23}B_3$ and Pr_3B phases effectively. The excellent permanent magnetic properties are mainly dominated by the nanoscaled microstructures and the coexistence of sufficient magnetically soft phases, $Pr_2Fe_{23}B_3$ and $Pr_2Fe_$

PACS: 75.50.Kj; 75.50.Ww; 75.50.Bb

Keywords: Nanocomposite; Metastable phase; PrFeB; Magnetic property

1. Introduction

Two different types of nanocomposite ribbons, including $Nd_2Fe_{14}B/\alpha$ -Fe [1,2] and $Nd_2Fe_{14}B/Fe_3B$ [3,4], have been extensively developed via melt spinning in order to enhance the magnetic properties of ribbons. For the former nanocomposites, the boron concentration is normally as low as 5.5–7 at%, while it is extremely high, B=16-20 at%, for the latter nanocomposites. However, very few studies have done to investigate magnetic properties, phase evolution, and microstructure of PrFeB-type nanocomposite ribbons in the phase transformation between α -Fe/Pr₂Fe₁₄B and Fe₃B/Pr₂Fe₁₄B region.

E-mail addresses: wei0208@gmail.com (H.W. Chang), phywcc@ccu.edu.tw (W.C. Chang).

In our previous studies, B_r , ${}_{i}H_c$, and $(BH)_{max}$ values of $8.4-9.6 \,\mathrm{kG}$, $9.5-14.3 \,\mathrm{kOe}$, and $(BH)_{\mathrm{max}}$ of 13.4-16.2 MGOe, respectively, have been obtained on the ternary $Pr_{9.5-11.76}Fe_{bal.}B_{10}$ ribbons [5]. The $_{i}H_{c}$ reduces while retaining high B_r and $(BH)_{max}$ values in this composition region (boron of approximately 10 at%), as decreasing the rare-earth content from 11 to 8 at%. We attempted to increase the volume fraction of the soft phase and refine the average grain sizes in order to strengthen the exchange-coupling effect between the magnetically soft and hard grains. Unfortunately, when the rare-earth content is less than 9 at %, a large amount of $R_2Fe_{23}B_3$ phase appears. It leads to the reduction of the volume fraction of R₂Fe₁₄B and the deterioration of the magnetic properties [5]. Similar result has been reported by Chen et al. in Pr₉Fe_{91-z}B_z nanocomposites with z = 8-12 [6], that the optimum magnetic properties of $B_r = 8.7 \text{ kG}$, $_iH_c = 6.3 \text{ kOe}$ and $(BH)_{\text{max}} = 12.4 \,\text{MG}$ Oe merely were obtained in ternary Pr₉Fe₈₃B₈ ribbons. Nevertheless, our recent research [7,8]

^{*}Corresponding author at: Department of Physics, National Chung Cheng University, Taiwan, ROC. Tel./fax: +886 5 2721091.

^{**}Also corresponding author.

has shown that a slight substitution of Ti for Fe in nearby $Pr_2Fe_{23}B_3$ ($Pr_{7.14}Fe_{82.14}B_{10.72}$) compositions is effective in suppressing the formation of metastable $Pr_2Fe_{23}B_3$ phase, which results in the presence of large amount of $Pr_2Fe_{14}B$ and α -Fe phases of fine grain sizes in the matrix even at lower annealing temperature. In Fe–B/Nd₂Fe₁₄B-type of Hirosawa's study [9], the magnetic properties of $B_r = 8.9 \, \text{kG}$, $_iH_c = 7.8 \, \text{kOe}$ and $_iBH_{max} = 15 \, \text{MG}$ Oe also were obtained in TiC co-substituted Nd₇Fe_{bal.}Ti₄B₁₂C₁ ribbons. Based on the above previous experiences, in this paper, we are interested in adopting Ti containing ingots with the composition of $Pr_xFe_{bal.}Ti_yB_{20-x}$ (x = 4-9; y = 2.5-5), to prepare melt-spun ribbons, attempting to investigate the variation of magnetic properties, phases, and microstructures.

2. Experiment

Alloy ingots with nominal compositions of Pr_xFe_{bal.} $\text{Ti}_{v} B_{20-x}$ (x = 4, 7, 8, and 9; y = 2.5, 4, or 5) were prepared by vacuum induction melting. Melt-spun ribbons were produced from ingots with wheel speeds ranging from 10 to 30 m/s. The ribbons selected were annealed at 600–700 °C for 10 min to optimize crystallization and to improve the permanent magnetic properties. Magnetic phases were determined by a Perkin-Elmer (model: TGA7) thermal gravimetric analyzer (TGA) with an externally applied magnetic field of 100 Oe (conventionally referred to as "TMA"). The magnetic properties, temperature coefficients and Henkel Plot [10,11] of the ribbons were measured by a DMS (model: 7035B) vibrating sample magnetometer (VSM). All samples were magnetized by a 40 kOe peak pulse field prior to the VSM measurement. The microstructures of ribbons are directly observed by a JEOL 100CX2 transmission electron microscopy (TEM).

3. Results and discussion

Table 1 lists B_r , ${}_iH_c$, and $(BH)_{\rm max}$ values of melt-spun $\Pr_x \operatorname{Fe_{bal}} \operatorname{Ti}_y \operatorname{B}_{20-x} (x = 4-9; y = 2.5, 4, \text{ or } 5)$ ribbons which follows their optimal crystallization treatment, along with the temperature coefficients of induction (commonly

Table 1 $B_{\rm r,\ i}H_{\rm c}$, and $(BH)_{\rm max}$ values of melt-spun ${\rm Pr}_x{\rm Fe}_{\rm bal}.{\rm Ti}_y{\rm B}_{20\text{-}x}$ (x=4 to 9; y=2.5, 4, or 5) ribbons following their optimal crystallization treatment, along with the temperature coefficients of induction (commonly referred to as α for $B_{\rm r}$ and β for ${}_{\rm i}H_{\rm c}$) for the temperature range of 25–100 °C

х	У	$B_{\rm r}~({\rm kG})$	$_{\rm i}H_{\rm c}$ (koe)	$(BH)_{\rm max}~({\rm MgOe})$	$\alpha~(\%/^{\circ}C)$	β (%/°C)
					25–100 °C	
9	2.5	9.5	10.7	17.8	-0.135	-0.576
8	2.5	9.6	8.1	16.2	-0.136	-0.580
7	2.5	9.7	5.5	10.8	-0.143	-0.588
4	2.5	10.2	3.5	8.3	-0.155	-0.618
7	4	9.0	7.8	13.3	-0.139	-0.585
7	5	9.2	9.6	15.8	-0.136	-0.579

referred to as α for $B_{\rm r}$ and β for ${}_{i}H_{\rm c}$) for the temperature range of 25–100 °C. For the ribbons with y=2.5, it can be found that $B_{\rm r}$ increases, but ${}_{i}H_{\rm c}$ decreases monotonously with decreasing Pr content x. Besides, the $(BH)_{\rm max}$ value sharply decreases from 17.8 to 8.3 MG Oe when x is decreased from 9 to 4. Among all ribbons, the optimal magnetic properties of $B_{\rm r}=9.5\,{\rm kG},\ {}_{i}H_{\rm c}=10.7\,{\rm kOe},\ {\rm and}\ (BH)_{\rm max}=17.8\,{\rm MG}$ Oe are obtained in Pr₉Fe_{bal.}Ti_{2.5}B₁₁.

On the other hand, the ${}_{i}H_{c}$ and $(BH)_{max}$ can be enhanced from 5.5 and 10.8 to 7.8 kOe and 13.3 MG Oe, respectively, with increasing Ti content from y=2.5 to y=4 in the $Pr_{7}Fe_{bal}.Ti_{y}B_{13}$ series ribbons. In addition, as Ti content is increased to y=5 in the $Pr_{7}Fe_{bal}.Ti_{5}B_{13}$ ribbon, the magnetic properties can be further enhanced to 9.6 kOe and 15.8 MG Oe. For temperature coefficients, the value of α and β of $Pr_{x}Fe_{bal}.Ti_{2.5}B_{20-x}$ increases with decreasing x, which reflects that decreasing p content in the studied alloys degrades the thermal stability of ribbons. On the contrary, more Ti (y=4 or 5) substitution for Fe in the $Pr_{7}Fe_{76}Ti_{y}B_{13}$ ribbon can decrease the value of α and β to enhance the thermal stability of ribbons.

Fig. 1 presents TMA scans of melt-spun Pr_xFe_{bal} . Ti_yB_{20-x} ribbons with optimal annealing treatment. For y = 2.5 series nanocomposite ribbons, it is found that ribbons with x = 9 have only two magnetic phases, hard magnetic phase $Pr_2Fe_{14}B$ and soft magnetic phase α -Fe. However, four phases, including $Pr_2Fe_{14}B$, α -Fe, metastable

Fig. 1. TMA scans of melt-spun Pr_xFe_{bal} . Ti_yB_{20-x} ribbons with optimal annealing treatment.

Download English Version:

https://daneshyari.com/en/article/1802762

Download Persian Version:

https://daneshyari.com/article/1802762

<u>Daneshyari.com</u>