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a b s t r a c t

Phase diagrams have been produced and critical exponents calculated for a Blume–Emery–Griffiths

system with competing biquadratic and crystal-field interactions with uniform ferromagnetic bilinear

interactions. This competition directly effects the clustering and density of nonmagnetic impurities.

These results have been produced using renormalization-group methods with a hierarchical lattice. A

series of planes of constant, repulsive biquadratic coupling have been probed while varying the

temperature and concentration of annealed vacancies in the system. The sinks have been analyzed and

interpreted, and critical exponents calculated for the higher order transitions.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

The Blume–Emery–Griffiths (BEG) model [1] is a spin-1 Ising
model with bilinear ðJijÞ, biquadratic ðKijÞ and crystal-field
interaction ðDijÞ terms as shown in the Hamiltonian
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with si ¼ 0;�1 (1)

The bilinear interactions directly effect magnetic ordering,
whereas the other two terms directly effect the relative density
ð�D=JÞ and clustering ð�K=JÞ of occupied sites in the system. The
model works well for systems characterized with fluctuations in
both density and magnetization
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In addition to the bilinear, biquadratic and crystal-field inter-
action terms we must also consider odd sector contributions to
the Hamiltonian, as shown in Eq. (2). These contributions must be
included in order to obtain a complete description of higher order
phase transitions arising in our system.

Each contribution to the Hamiltonian involves a summation
over nearest-neighbor hiji pairs of our lattice unit structure
including the magnetic (H) and crystal-field ðDÞ interactions.
Normally, these field interactions (H and D) involve a summation
over lattice sites; however, this investigation has changed the
summation from sites to bonds for computational convenience.
The net result of this shift being D in Eq. (1), and H in Eq. (2),
represents the chemical potential, and magnetic field, per bond
divided by two.

The BEG model has been extended beyond its original
application, to the superfluid transition in He3

2He4 mixtures
[1], to consider several other systems. In particular, structural
glasses [2], microemulsions [3], binary fluids, materials with
mobile defects, semiconductor alloys [4], frustrated percolation
[5], and aerogels are but a few systems that have been better
understood by employing the BEG model.

The criticality and phase diagrams can become quite complex
due to underlying competing interactions in various Blume–
Emery–Griffiths systems. Many different types of competing
interactions have been the focus of previous studies using the
Blume–Emery–Griffiths model in conjunction with mean-field
methods [6–9] and/or renormalization-group techniques [10–16].

Renormalization-group techniques in conjunction with hier-
archical lattices have been used to probe the effects of competing
bilinear interactions [11] in a spin-1

2 Ising model, competing
biquadratic interactions in a dilute Ising ferromagnet [14],
competing bilinear interactions in a BEG system [13], and
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simultaneous competition between crystal-field and biquadratic
interactions in a BEG ferromagnet with attractive biquadratic
interactions [12]. Each of these studies included tuning para-
meters allowing for the degree of frustration to be decreased,
increased or maximized.

Previous studies have considered the effects of random crystal
fields using real-space renormalization-group methods [15,16]
and mean-field approximations [15,17] for both Blume–Capel and
Blume–Emery–Griffiths model Hamiltonians, respectively. Still,
other studies have considered the effects of quenched random
bonds [18] and quenched random fields [19] upon the criticality
and phase diagrams in BEG systems.

The present study complements these earlier investigations as
it considers a Blume–Emery–Griffiths system with competing
biquadratic ð�KÞ and crystal-field ð�DÞ interactions with uniform
ferromagnetic bilinear interactions ðJÞ. Phase diagrams have been
produced, and critical exponents calculated, for a series of planes
of constant, repulsive biquadratic coupling while varying the
temperature and concentration of annealed vacancies in the
system. These results have been produced using renormalization-
group methods with a hierarchical lattice.

2. Hierarchical lattices and renormalization-group theory

The construction of a general hierarchical lattice is depicted in
Fig. 1. Fig. 2 illustrates the construction of the hierarchical lattice
[20,21] used for this study. The general process, for constructing
an infinite hierarchical lattice, consists of replacing each nearest-
neighbor interaction in the basic unit, by the basic unit itself.

Since hierarchical lattices produce exact renormalization-
group recursion relations, phase diagrams can be produced and
critical exponents determined very precisely. Thus, the results

presented in this paper are exact on the rather specialized
hierarchical lattice. Or, the calculations of phase diagrams and
critical exponents may be considered as approximations on more
realistic lattices. A wide range of complex problems have been
probed and further understood using hierarchical lattices. For
instance, spin glass [13,22], frustrated [11,12,14], random-bond
[23], directed-path [24], random-field [25] and dynamic scaling
[26] systems have all been subjected to study using hierarchical
lattices.

Reversing the construction process, shown in Figs. 1 and 2,
yields renormalization-group relationships for the various cou-
pling coefficients as internal degrees of freedom are eliminated
with each renormalization. The internal degrees of freedom (i.e.
internal spin sites) are represented by solid black dots in Fig. 2a
and b, and, by si;sj in Eq. (5).

Recursion relations are derived by demanding that the
partition function be preserved at each length scale. The new
effective interactions J0, K 0, and D0 are separated by a distance l0,
which is b lattice constants in the original system—where b is the
length rescaling factor of the renormalization-group transforma-
tion
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where eG0 is a constant used to calculate the free energy.
The contributions, Rlðsi; sjÞ and Rl0 ðs

0
i; s
0
jÞ, to the two partition

functions (zl0 and zl), at length scales l and l0, correspond to the
same fixed configuration of end spins, si; sj and s0i; s

0
j. Equating

these contributions yields renormalization-group relationships
relating the coupling coefficients at the two length scales, l and l0:
J0ðJ;K;DÞ;K 0ðJ;K;DÞ; and D0ðJ;K;DÞ. The reader is directed to Section
4 for a derivation of these relations.

These recursion relations are used to map phase diagrams and
probe the nature of transitions by renormalizing the system from
a set of initial values of J;K and D, until a sink for the
renormalization-group trajectory is reached

J0 ¼ RJðJ;K;DÞ (8)

K 0 ¼ RK ðJ;K;DÞ (9)

D0 ¼ RDðJ;K ;DÞ (10)
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Fig. 1. An infinite hierarchical lattice is generated from a basic unit by repeatedly

replacing each nearest-neighbor interaction by the basic unit itself [20].

Fig. 2. Construction of the hierarchical lattice. Solid lines represent ðJ;K;DÞ
nearest-neighbor site interactions, whereas jagged lines represent ðJ;�K ;�DÞ
nearest-neighbor site interactions. The general process, for constructing an infinite

hierarchical lattice, consists of replacing each nearest-neighbor interaction in the

basic unit, by the basic unit itself. (Reprinted from Journal of Magnetism and

Magnetic Materials, 314, 69–74 (2007), D.P. Snowman, with permission from

Elsevier.)

Table 1
Phases and corresponding sinks.

Phase Sink Characteristics

Paramagnetic I J! 0 Mag. disorder

K ! 0 Dense sublattice I

D!�1 Dilute sublattice II

Ferromagnetic I J!þ1 Mag. order

K !�1 Dense sublattice I

D!�1 jDj � jKj ¼ jJj

Paramagnetic II J! 0 Mag. disorder

K ! 0 Dilute sublattice I

D!þ1 Dense sublattice II

Ferromagnetic II J!þ1 Mag. order

K !�1 Dense sublattice II

D!�1 jDj � jKj ¼ jJj
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