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a b s t r a c t

We investigate the effect of frustration on spin-wave excitation spectra and the properties of the quasi-

one-dimensional Heisenberg chain using a spin-wave–wave analysis, the exact diagonalization method

and the density matrix renormalization group method. The results show that frustration can cause the

softening of the acoustic excitation spectrum o3, as well as the hardening of the optical excitation

spectrum o1. As a function of the frustration parameter a, the phase diagram exhibits a ferromagnetic

phase, a narrow canted phase and a singlet phase. The results obtained from numerical methods show

that the spin gap obviously opens and the tetramer–dimer state dominates the properties of the ground

state in the singlet phase.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

The study of quantum spin chains with frustration in quasi-one-dimensions has received considerable interest for decades. As a result
of frustration, different quasi-one-dimensional (QOD) antiferromagnetic (AF) chains exhibit a variety of exotic quantum phases [1–4]. In
recent years, the properties of many synthetic compounds can be described with some QOD AF chains. For example, in some parameter
regions, the orthogonal-dimer spin chain is in the dimer phase and in others, it is in the plaquette phase [5]. The properties of the
compound SrCu2(BO3)2 can be described with this model [6]. Another example is the distorted-diamond model. The ground-state (GS)
phase diagram of this model is composed of the ferromagnetic (F) phase, the dimer phase and the spin-liquid phase [7]. It can describe
the property of the actual material Cu3Cl6(H2O)2 �2H8C4SO2 [7]. Although the numbers of the two-sublattice’s site spins are identical in
many Heisenberg spin chains (using the Lieb and Mattis division method [8], if one site belongs to one sublattice, then another one
connected with the site through the nearest interaction belongs to another sublattice), there exists some spin models with unequal site
spins in two sublattices [7,9]. Sublattice symmetrical breaking causes obvious changes of the spin property in the GS of these systems. For
instance, although the spin interaction of the AF distorted-diamond chain is AF, known from the Lieb–Mattis theorem, the breaking of the
sublattice symmetry causes the GS of the model without frustration to possess the F long range order (LRO). When the frustration is
relatively weak, the magnetic LRO is still possessed by that model, but it is destroyed in the case of strong frustration.

In this article, we study a QOD AF Heisenberg spin chain with frustration, as shown in Fig. 1. By periodically doping the spins (called
side spin) adjacent to each spin site of the same sublattice in the one-dimensional Heisenberg spin chain, a QOD Heisenberg spin chain is
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constituted. The Hamiltonian is

H ¼ J
XN

i¼1

ðs3i�2s3i�1 þ s3i�1s3iþ1 þ s3i�1s3iÞ þ aJ
XN

i¼1

ðs3i�2s3i þ s3is3iþ1Þ ð1Þ

where J(J40) is the coupling constant along the chain and between the side spin and the nearest neighbor spin on the chain,
and aJ(aZ0) is the coupling constant between the side spin and the next nearest neighbor spin on the chain. The model does not possess
sublattice symmetry. It has been proved that the Lieb–Mattis FLRO exists in the GS [9] when a ¼ 0. Then the total spin of the GS is Sg ¼

1
2N

according to the Lieb–Mattis theorem. In this paper, the aim is to study the effect of frustration on the properties of the model in
the GS.

2. The magnetic phase

Although the Lieb–Mattis theorem does not work when a40, it can be expected that the FLRO will survive up to some
finite a due to the continuity principle. That means the total spin Sg of the GS will still take the value 1

2N in the regime of small a.
In order to check this hypothesis, we use exact diagonalization (ED) (24 sites) to calculate the total spin of the GS Sg. From the
result of ED, we find that Sg always takes the value 1

2� N ¼ 4 as ar0.408, which discloses that the FLRO with Sg ¼
1
2N ¼ 4 is

always the GS of the model as ar0.408. At the transition point ac1 ¼ 0.408, Sg changes from 1
2N ¼ 4 to 2. Another transition

point is found at ac2 ¼ 0.410, where Sg changes from Sg ¼ 2 to a singlet GS with Sg ¼ 0. So, a canted phase with 0oSgo1
2N

exists in a very narrow parameter region, but that phase cannot be found in the systems with N ¼ 4 and N ¼ 6 due to finite-size
effects.

Since the GS of the model possesses the FLRO, we firstly use spin-wave theory (SWT) to discuss the effect of frustration on this model
in the regime of weak a. For convenience, the model can be divided into three sublattices (denoted A, B and C) corresponding to the
geometric position difference as shown in Fig. 1. After performing the standard Holstein–Primakoff and the Fourier transforms, Eq. (1)
becomes

H ¼ E0 þ Js
X

k

2aþk ak þ 3bþk bk þ cþk ck þ 2 cos
k

2
ðaþk bþk þ akbkÞ þ ðb

þ

k cþk þ bkckÞ

� �
þ 2saJ

X
k

�cþk ck � aþk ak þ cos
k

2
ðaþk ck þ akcþk Þ

� �
ð2Þ

where E0 ¼ �3JNs2+2aJNs2 is the energy of classical GS with Neel order and where the operators ak, bk and ck obey bosonic commutation
relations.

After defining the matrix retarded Green function [10] as

Gðk;oÞ ¼

5akja
þ

k b 5akjb
þ

k b 5akjc
þ

k b 5akjakb 5akjbkb 5akjckb

5bkja
þ

k b 5bkjb
þ

k b 5bkjc
þ

k b 5bkjakb 5bkjbkb 5bkjckb

5ckja
þ

k b 5ckjb
þ

k b 5ckjc
þ

k b 5ckjakb 5ckjbkb 5ckjckb

5aþk ja
þ

k b 5aþk jb
þ

k b 5aþk jc
þ

k b 5aþk jakb 5aþk jbkb 5aþk jckb

5bþk ja
þ

k b 5bþk jb
þ

k b 5bþk jc
þ

k b 5bþk jakb 5bþk jbkb 5bþk jckb

5cþk ja
þ

k b 5cþk jb
þ

k b 5cþk jc
þ

k b 5cþk jakb 5cþk jbkb 5cþk jckb

0
BBBBBBBBB@

1
CCCCCCCCCA

ð3Þ

Then using the Green function theory, we can obtain the motion equation of the Green function as

DG ¼ I ð4Þ

where

D ¼

o� 2Jsð1� aÞ 0 �2saJ cosðk=2Þ 0 �2Js cosðk=2Þ 0

0 o� 3Js 0 �2Js cosðk=2Þ 0 �Js

�2saJ cosðk=2Þ 0 o� Jsð1� 2aÞ 0 �Js 0

0 2Js cosðk=2Þ 0 oþ 2Jsð1� aÞ 0 2saJ cosðk=2Þ

2Js cosðk=2Þ 0 Js 0 oþ 3Js 0

0 Js 0 2saJ cosðk=2Þ 0 oþ Jsð1� 2aÞ

0
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Fig. 1. The structure of the quasi-one Heisenberg spin chain.
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