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a b s t r a c t

We present an analytic model for the barrier transmission coefficient that can be used to calculate the

tunnelling magnetoresistance (TMR) for metal–insulator–metal systems. It removes the approximations

inherent in the Simmons’ and Brinkman models currently used to fit experimental systems that give

much lower predictions of the barrier height than would be expected. The model is accurate enough to

directly relate to the experiment and hence device optimisation by predicting junction parameters that

are in line with bulk properties.

& 2009 Elsevier B.V. All rights reserved.

The tunnelling magnetoresistance (TMR) effect in magnetic
tunnel junctions (MTJs) describes the change of the resistance of
two ferromagnetic electrodes separated by a thin insulating non-
magnetic layer as the electrodes switch polarisations from parallel
to antiparallel. The commonly used measure, the pessimistic TMR,
is defined as (Jp�Jap)/Jp, where Jp and Jap are the current density in
parallel and antiparallel magnetic alignment, respectively. Each of
these, in turn, are the sum of the currents resulting from
tunnelling across the barrier of the majority and minority spin
electrons from the anode in a given configuration. The problem for
theoretical analysis is that, since the TMR depends upon
calculating the difference in tunnelling currents (Jp�Jap), a high
accuracy in the calculation of each component is essential.

Approaches in use are predominantly computational; nearly
free-electron-based models deriving from the work of Simmons
[1] and Brinkman [2] replace the spin split bands in the contacts
by free electron bands of mass me and the barrier by a potential
barrier of a given thickness and width. This process gives a
number of parameters for the system that can be suitably adjusted
to fit the experimental results. The Simmons [1] and Brinkman [2]
models are still used today for the determination of the barrier
thickness and height of MTJ devices and analysis of TMR [3–6],
even though the parameters used (effective mass, barrier heights)
are often far from those expected from bulk values.

Fits to junctions with an Al2O3 barrier using the Simmons
model have predicted barrier heights of the order 1.56 eV [7] and
2 eV [5] while the band gap of Al2O3 has been found to be of the
order 6–10 eV [8]. Therefore, we would expect to find an extracted
barrier height of at least 3–5 eV. Within each model, the effective
mass within the barrier is always assumed to be the same as the
effective mass within each of the electrodes. The effective mass in
the barrier can vary from the free electron mass by as much as one
tenth for the case of Ge [9] and even by 40% for the case of Al2O3

[8] increasing the probability of tunnelling through the barrier
significantly compared to the tunnelling of a free electron mass.

In contrast, ab-initio calculations of MTJs are heavily computa-
tional and whilst they have proved extremely useful in dealing
with crystalline barriers [10], they lack the flexibility needed to be
applied to experimental systems.

Although computational approaches are extremely useful, an
analytic model of the system is essential in order to explore the
wide parameter range available, relate the experimental results to
device parameters and optimise the TMR. This letter presents an
analytic model that is accurate enough for the calculation of
experimental voltage-dependent TMR ratios using realistic values
for the device parameters in agreement with known band-
structure values. Key to the model is an accurate formulation of
the tunnelling probability through a barrier. The model presented
allows for variation in material parameters in both the electrodes
and the barrier while a simple extension to the Wentzel–Kra-
mers–Brillouin (WKB) wave functions in the barrier increase the
range of voltages which could be considered.
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The elements of the model are shown in Fig. 1; it builds upon
the Simmons/Brinkman approach to include a more realistic
parameterisation of the system. The majority and minority spin
bands of the contacts are described by free electron bands with
effective mass and bandwidths appropriate to the band structure
of the metal involved, the insulator by a potential barrier of
appropriate height, width and tunnelling effective mass. The
tunnelling is assumed to maintain the carrier spin and so,
depending upon whether it is parallel or antiparallel
configuration, the carriers will tunnel between majority and
minority bands or from majority to minority and vice versa with
the appropriate transmission coefficient. The tunnelling states in
the barrier are described by WKB functions. Normally this would
restrict the solution to small voltages because of the behaviour of
the WKB prefactor at the collector interface. By linearising the
barrier potential variation near the interface and then ensuring
the Airy function solutions asymptotically matching the WKB
solution within the barrier [11], the voltage range can be
substantially extended [12]. This method matches the wave
function in the barrier to the large argument airy function
(WKB approximation). By considering the exact wave
function for a linear potential across the barrier and comparing
with the WKB functions it is possible to correct the transmission
for large applied voltage. The currents Jp and Jap are then
calculated by integrating over all available momentum
values.

The transmission through the barrier for each spin combina-
tion s (mm,kk,mk,km) of the MTJ is determined by solving the
Schrödinger equation in three regions and matching across the
boundaries. For the normal range of experimental barrier
thicknesses we obtain the prefactor-exponential functional form
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2 )) is the energy of the incident electron. U, V,
EF1, EF3 and f (V, x) are shown in Fig. 1. U and V are the barrier
offset and applied voltage, (m1, m2, m3) and EF1, EF3 are the
effective masses and bandwidths in the emitter barrier and
collector, respectively, appropriate to the spin combination. kJ is
the (conserved) wave vector parallel to the interface and k and q

are the wave vectors in the emitter and collector electrode,
respectively. The terms in V/d arise from the WKB correction
procedure. Detailed comparisons with numerical solutions show
that |T|2 is accurate to within 4% for all experimental voltages and
material parameters relevant to TMR [12].

The tunnelling current density Js for each spin configuration
(mm,kk,mk,km) is found in the usual way by summing over all
tunnelling states.
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where we define kV
2
¼ 2m1V/_2.

Since the dominant variation in the integrand is due to the
exponential factor in the transmission coefficient, slowly varying
prefactor P can be extracted from the integral and evaluated at an
effective k?, kjjpoint to give
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and k0
2
¼ 2m1U/_2.

The contribution to the integral as a function of kJ peaks due to
the conflicting effects of the increasing phase space and the cutoff
caused by the exponential term with kJ. The value of kJ at the peak
in the prefactor gives an excellent fit to the current Js evaluated
numerically [12] while for all relevant values of kJ the variation of
the prefactor is close to linear with k? so that

k̄? ¼
1

2
ððk2

F � k̄
2

k þ k2
V Þ

1=2
þ ðk2

F � k̄
2

k Þ
1=2
Þ, (8a)

and

kk ¼

ffiffiffiffiffiffi
1

2d

r
m1

m2
� 1

� ��1=2 m1

m2
ðk2

0 � k2
F Þ

� �1=4

. (8b)

ARTICLE IN PRESS

U

V

φ(V,x)

x

E

d

EF1

EF3

VB

Fig. 1. Schematic of the magnetic tunnel junction showing the relevant potential

parameters with applied bias V and barrier thickness d. Case shown here is for

minority carrier tunnelling in an antiparallel magnetisation configuration (km),

where EF1oEF3.
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