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Abstract

Plane-wave reflection from interfaces with single and double wire media is considered. Such media exhibit strong spatial dispersion

even at very low frequencies which causes appearance of additional waves. The problem of additional boundary conditions (ABC) in

application to wire media is discussed and an ABC-free approach, known in solid state physics, is used. Expressions for the fields and

Poynting vectors of refracted waves are derived. The directions and values of the power density flow of refracted waves are found and

conservation of the power flow through the interface is checked.
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1. Introduction

The wire medium (WM) is an artificial medium formed
by lattices of ideally conducting thin wires. Such a
metamaterial is described usually at low frequencies as a
uniaxial crystal, whose permittivity tensor components
are expressed by the plasma model. It has been shown in
Ref. [1], that if the wavevector in a WM has a nonzero
component along the wires, the plasma model should be
corrected introducing spatial dispersion (SD). Strong
spatial dispersion is inherent to WM at any frequency,
including the very large wavelength limit. This concerns
both the usual (single) WM and double WM, formed by
two mutually orthogonal wire lattices. Recently, the more
complicated problem of double WM was solved in Ref. [2]
numerically, in Ref. [3] using a semi-analytical approxima-
tion of the local field, and in Ref. [4] both numerically and
using the effective medium (EM) approach. In the last
paper a very good agreement between the results given by

the EM and full-wave theories for all types of waves in
double WM (if the wires are thin) has been demonstrated.
One of the most important effects of SD is the existence

of additional waves and necessity of additional boundary
conditions (ABC) for solution of any boundary value
problem. In this paper, we consider a wave refraction
problem at an interface of a semi-infinite WM. Both single
WM and double WM are discussed.
In this paper, we consider plane-wave reflection and

refraction at an interface of WM using the effective
medium approach. We assume that the wire arrays are
identical and are not connected (in double WM case), the
lattice period is equal to L in the x, y, and in z (in double
WM case) directions, and the radius of the wires r05L. We
assume also that the interface of the double WM lies in the
ðxyÞ plane, and the incident wave vector lies in the ðyzÞ

plane. In the single WM case we assume that the wires are
normal to the interface (directed along z-axis). The
effective medium model is used for description of the
WM, and the ABC-free approach introduced in Ref. [5] is
applied for overcoming the problem of additional waves.
The reflection coefficient, field amplitudes and Poynting
vectors for refracted waves are calculated.
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2. Eigenwaves in double wire medium

Assuming space-time dependence of fields as
eiðot�kyy�kzzÞ, there are non-zero wave vector components
parallel to the wires. Anisotropy appears in this electro-
magnetic crystal with a square lattice, and a double WM
behaves as a biaxial crystal with the relative permittivity
dyadic

� ¼ �xuxux þ �yuyuy þ �zuzuz (1)

with
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where k ¼ k0
ffiffiffiffi
�h
p

, k0 ¼ o=c, c is the speed of light, �h is the
relative permittivity of the host medium, and kp is the
plasma wavenumber, calculated using approximate for-
mula (see Ref. [1]).

For the single WM the permittivity component �y ¼ �h.
Model (2) is valid both for real and imaginary ky

(propagating and evanescent waves, respectively) (see
Ref. [1]).

Propagation constant ky is determined by the incidence
angle ky ¼ k0 sin y and kz is found from the dispersion
equation, which has the following form for waves in double
WM [4]:

Tðkz;oÞ ¼ k2
z � k2�yðkyÞ � k2

y

�yðkyÞ

�zðkzÞ

� �
¼ 0. (3)

Solutions for kz is given in Ref. [4]. Two TM modes
propagating or attenuating in both directions follow from
the EM theory. Including the TE wave, there exist three
waves. The conventional isotropic plasma model leads to
only one wave for a certain direction and polarization,
namely,

kz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
0�� k2

y

q
; where � ¼ �hð1� k2

p=k2
Þ.

In the single WM case spatial dispersion also leads to
two solutions with the same polarization:

kzþ ¼ k ðTEM modeÞ,

kz� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
� k2

y � k2
p

q
ðTM modeÞ. ð4Þ

It was demonstrated in Ref. [4], that electrodynamical
calculations (using the three-dimensional Green’s function)
confirm the results of the effective medium theory with a
high accuracy in a wide spectral range including the regions
of evanescent and propagating waves.

3. Interface problem

Assuming the y-component of the electric field of the
incident wave to be equal unity, and applying the
continuity conditions of the tangential field components

results in the reflection problem formulated as follows:

1þ RE ¼ Eþ þ E�,

ð1� REÞ=Z0 ¼ Eþ=Zþ þ E�=Z�, ð5Þ

where RE is the unknown reflection coefficient for the
tangential component of electric field, Eþ, E� are the
unknown amplitudes of refracted waves in wire medium,
Z0 ¼ Z cos y, Z is the wave impedance (TM) in free space
and Z� are the wave impedances for the tangent field
components of refracted waves. Thus the problem becomes
similar to appearing in crystallooptics, where excitons arise
and spatial dispersion cannot be neglected. It was pointed
out first by Pekar [6], that the well-known Maxwell’s
boundary conditions (5) are not sufficient to connect the
amplitudes of the incident and transmitted waves in
adjoining media, if more than one independent wave can
propagate in any of the contacting media.
In order to avoid the ABC problem we use an approach,

proposed by Henneberger [5]. It is based on the assumption
of an abrupt transition from medium to vacuum. It is
assumed that the incident wave excites a source sðz;oÞ,
located within a sub-surface layer. Applying this approach
for considering our interface problem of free space and the
wire medium, the wave equation for Hx in unbounded
medium should be replaced by an inhomogeneous equation

q2Hx

qz2
þ k2

0�yðkyÞ � k2
y

�yðkyÞ

�zðkzÞ

� �
Hx ¼ sðz;oÞ, (6)

where Hx is the scattered field. It means that any
propagating wave has to be created by a source. The
proper source of the penetrating wave in the wire medium
is the incident wave and the polarization induced by it in
the medium. Such an externally controlled source can be
identified with some polarization additionally induced to
the one already described by �. Therefore it is located only
in the surface or in the transition region, where the induced
polarization deviates from that in the bulk medium. After
the Fourier transform of Eq. (6) one obtains

Hxðz;oÞ ¼
Z 1
�1

dkz

2p
sðkz;oÞeikzz

Tðkz;oÞ
, (7)

where sðkz;oÞ is the Fourier transform of sðz;oÞ. Assuming
an abrupt transition from medium to vacuum, we can
present a source as a delta function sðz;oÞ ¼ s0ðoÞdðzÞ, then
sðkz;oÞ ¼ s0ðoÞ. If Tðkz;oÞ is an analytical function, the
integration in Eq. (7) can be performed using the residuum
method. Residues can be found by presenting 1=T (Eq. (3))
in the form:

1
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where the coefficients are

bþ ¼
k2
� k2

p � k2
zþ

k2
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, (9)
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