Contents lists available at ScienceDirect # Journal of Magnetism and Magnetic Materials journal homepage: www.elsevier.com/locate/jmmm # Dehydrogenation at the Fe/Lu₂O₃ interface upon rapid thermal annealing R. Mantovan ^{a,*}, C. Wiemer ^a, A. Lamperti ^a, A. Zenkevich ^b, Yu. Lebedinski ^b, M. Fanciulli ^{a,c} - ^a Laboratorio Nazionale MDM CNR-INFM, Via C. Olivetti 2, 20041 Agrate Brianza (MI), Italy - ^b Moscow Engineering Physics Institute, 115409 Moscow, Russia - ^c Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Milano, Italy ### ARTICLE INFO Article history: Received 4 July 2008 Received in revised form 21 January 2009 Available online 26 February 2009 PACS: 68.35.ct 81.40.Ef 76.80.+y 75.70.Cn 61.10.Ht Keywords: Interface Intermetallic Conversion electron Mössbauer spectroscopy Thermal annealing ### ABSTRACT The interfaces between ferromagnetic electrodes and tunnel oxides play a crucial role in determining the performances of spin-based electronic devices, such as magnetic tunnel junctions. Therefore, a deep knowledge of the structural, chemical, and magnetic properties of the buried interfaces is required. We study the influence of rapid thermal annealing treatments up to $500\,^{\circ}\text{C}$ on the interfacial properties of the Fe/Lu₂O₃ system. As-grown stacks reveal the presence of hydrogenated Fe-Lu-H intermetallic phases at the Fe/Lu₂O₃ interface most likely due to the H absorption on the Lu₂O₃ surface upon exposure to air and/or to the oxide growth. The annealing treatments induce remarkable changes of the structural, chemical, and magnetic properties at the interface, as evidenced at the atomic scale by the sub-monolayer sensitivity of conversion electron Mössbauer spectroscopy. The use of complementary techniques such as X-ray diffraction, time-of-flight secondary ion mass spectrometry, and *in situ* X-ray photoelectron spectroscopy, confirms that the main effect of the annealing is to gradually promote the dehydrogenation at the Fe/Lu₂O₃ interface. © 2009 Elsevier B.V. All rights reserved. # 1. Introduction The study of the Fe/oxide interfaces properties at the atomic scale represents a fundamental step towards their efficient inclusion in novel spin-based electronic devices, such as magnetic tunnel junctions (MTJs) [1]. A MTJ stack includes two ferromagnetic (FM) layers separated by a tunnel barrier. The chemical bonding at the FM/oxide interfaces and the interfacial density of states dramatically influence the MTJ performances, while the presence of paramagnetic layers at the interface has a detrimental effect on the tunnel magnetoresistance (TMR) [2]. A deep knowledge of the structural and magnetic properties of the buried interfaces is, therefore, required for a better engineering of MTJ devices. We have already reported the study of as-deposited interfaces between Fe and different oxides (Al_2O_3 , ZrO_2 , HfO_2 , and Lu_2O_3) [3]. These interfaces have been compared by considering the Fe atoms reactivity at the interface (intermixing), as estimated by conversion electron Mössbauer spectroscopy (CEMS) [3]. We found that the largest intermixing occurs at the Fe/Lu₂O₃ interface, and we attributed this result to the formation of intermetallic phases and hydrogenated intermetallic compounds [2]. The rapid thermal annealing (RTA) processes are known to be beneficial for improving the TMR and the thermal stability of MTJs [4]. In this contribution, we use the sub-monolayer sensitivity of CEMS to investigate the structural, chemical, and magnetic changes at the Fe/Lu₂O₃ interface upon RTA. Complementary information is obtained by grazing incidence X-ray diffraction (XRD) and time-of-flight secondary ion mass spectrometry (ToF SIMS). The early stage of the Fe/Lu₂O₃ interface formation is investigated by *in situ* X-ray photoelectron spectroscopy (XPS). Our results show that RTA treatments induce a gradual desorption of hydrogen from the Fe/Lu₂O₃ interface, leaving the α -Fe and the intermetallic Fe–Lu phases in contact with Lu₂O₃. ## 2. Experimental The Lu_2O_3 layers (nominal 20 nm thick) are deposited at 360 °C by atomic layer deposition (ALD) on a Si(100) substrate, by using the bis-cyclopentadienyl complex { $[C_5H_4(SiM_3)]_2LuCl\}_2$ and H_2O as Lu and O sources, respectively [5]. The oxide surface roughness is around 2.4 nm, as measured by atomic force microscopy [3]. Pulsed laser deposition (PLD) at room temperature (RT) is used to ^{*} Corresponding author. E-mail address: roberto.mantovan@mdm.infm.it (R. Mantovan). deposit a thin 57 Fe tracer layer ($\sim 2 \, \mathrm{nm}$) in contact with Lu₂O₃, followed by the deposition of 54 Fe layer. CEMS is therefore sensitive to the Fe/Lu₂O₃ interface, being unaffected by the surface oxidation of Fe. Second sample, only containing the 54 Fe isotope (nominal 10 nm Fe), has been prepared for the XRD analyses. From here on, we indicate the sample used for CEMS as Fe(20 nm)/Lu₂O₃ and the sample with only 54 Fe as Fe(10 nm)/Lu₂O₃. A third Lu₂O₃ substrate is used for performing XPS *in situ* during the PLD of a 2 nm thick Fe layer. Following the Fe deposition, this sample has been vacuum annealed *in situ* at 500 °C for 3 min, and characterized by XPS with a XSAM-800 spectrometer (MgK $_{\infty}$ source, $E = 1253.6 \, \mathrm{eV}$) coupled with the PLD chamber. The RTA has been performed in Ar ambient in two separate stages: 300 °C for 15 s and 500 °C for 15 s, followed by a 6 min cool down. The CEMS and XRD analyses have been performed ex situ on corresponding samples before and after each RTA. CEMS has been carried out at RT by using a ⁵⁷Co source embedded in a Rh matrix (activity \sim 30 mCi when the measurements were performed), which is moved by a standard constant acceleration drive. The samples are incorporated as electrodes in a parallel-plate avalanche counter, which is filled with 180 mbar of a He-CH₄ counting gas [6]. Operating voltages are around 700 V. The spectra are fitted with the least-squares fitting program NORMOS 90 [7]. The XRD data are taken with an ItalStructures HRD3000 diffractometer equipped with a position sensitive curve detector. The data are analysed by using the software package MAUD [8]. ToF SIMS analysis is performed after RTA at 500 °C on the Fe(20 nm)/Lu₂O₃ sample, with a IONTOF IV instrument using Ga+ ions at 25 keV for analysis and Cs+ ions at 0.5 keV for sputtering. ## 3. Results and discussion Fig. 1 shows the CEM-spectra of the as-deposited Fe/Lu₂O₃ interface and after RTA at 300 and 500 °C. The CEM-spectra evidence the typical Mössbauer sextet of α -Fe, component a in Fig. 1(a), showing hyperfine field $(B_{\rm hf})$ of 33T due to noninteracting ⁵⁷Fe atoms, a distribution of magnetically split sextets b, and a paramagnetic doublet c. The distribution b has been attributed to the presence of the LuFe₂ intermetallic phase at the Fe/Lu₂O₃ interface, together with the existence of a hydrogenated intermetallic compound LuFe₂H_x [3]. The incorporation of H at the interface has been attributed to the two-step process necessary to deposit the Fe layer by PLD on top of the Lu-oxide, which is exposed to air following the ALD and/or the ALD process itself [3]. The doublet c is possibly related to a small fraction (\sim 2%) of a binary Fe-Lu amorphous alloy [3]. When compared with the CEM-spectrum reported in Ref. [3] for the same sample, we now use a larger velocity scale. Some additional contributions coming from sextets having $B_{hf} \geqslant 33 \,\mathrm{T}$ are now identified in the distribution b. Similar increase of $B_{\rm hf}$ for Fe atoms in contact with oxide layers has been previously observed [9]. To exclude the presence of any FeO_x magnetic oxides, spectra with an even larger velocity scale were recorded (not shown). In fact, the presence of Fe₂O₃ and/or Fe₃O₄ could be easily detected as the CEM-spectra of these phases are characterized by magnetically split sextets having B_{hf} around 50T [10]. These phases are not detected at the Fe/Lu₂O₃ interface either on the as-deposited or on the annealed samples. According to CEMS results, the RTA at 300 °C is beneficial in reducing the relative fraction (of the total spectral area) of the distribution b from \sim 71% to 58%, Fig. 1(b). In particular, we observe a large decrease of the contribution from the components having the $B_{\rm hf}$ in the 25-30T range, which are related to the hydrogenated LuFe₂H_x. Further, a drastic decrease of the intermixing at the Fe/Lu₂O₃ interface is observed after the RTA at **Fig. 1.** (Colour online) (a) CEM-spectrum of the Fe/Lu₂O₃ interface as-deposited and after (b) RTA at 300 °C and (c) RTA at 500 °C. CEMS detects the presence of α -Fe, (LuFe₂+LuFe₂H_x), and a small fraction of Lu-rich Lu-Fe phase, as indicated in the figure with a, b, and c, respectively. 500 °C, when the spectral contribution from the distribution b is reduced to 22% of the total intensity, Fig. 1(c). This is attributed to the almost complete disappearance of the hydrogenated intermetallic contribution from the Fe/Lu₂O₃ interface. The CEMS results are substantiated by the XRD, ToF SIMS, and XPS analyses as discussed later. After RTA at 500 °C, the main peak in the $B_{\rm hf}$ distribution is around 20 T, which is very close to the $B_{\rm hf}$ observed by Mössbauer spectroscopy for the LuFe₂ crystalline compound at RT [11]. The spectral area of component c remains almost constant throughout the RTA treatments. The isomer shift and the quadrupole splitting values of the a, b, and c components in the CEM-spectra after RTA do not show any significant difference with respect to those observed for the as-deposited interface [3]. The XRD spectrum for the as-deposited Fe(10 nm)/Lu₂O₃ sample, shown in Fig. 2(a), reveals characteristic features of the diffraction patterns of Lu₂O₃, α -Fe, LuFe₂, LuO(OH), and LuFe₂H₃ further supporting the presence of hydrogenated compounds at the Fe/Lu₂O₃ interface [12]. Following the RTA at 300 and 500 °C, XRD shows a gradual decrease of the contributions from the hydrogenated compounds confirming the CEMS results, Fig. 2(b). Although a slight reduction of the Lu₂O₃ lattice parameter (within 0.2%) cannot be excluded, the main effect of the 500 °C annealing on the diffraction pattern is the reduction of the LuO(OH) and LuFe₂H₃ related components. We performed ToF SIMS analysis on the Fe(20 nm)/Lu₂O₃ sample after RTA at 500 °C, and the results are reported in Fig. 3. The uniform distribution of the OH signal through the Fe and Lu₂O₃ layers, strongly supports the hypothesis for a dehydrogenation process taking place at the Fe/Lu₂O₃ interface, as suggested by CEMS. ToF SIMS evidences also a partial interdiffusion at the Fe/Lu₂O₃ interface. This aspect could be crucial in view of the inclusion of the Fe/Lu₂O₃ system in devices such as MTJs, and is currently under investigation. To further investigate the structural modifications taking place at the Fe/Lu_2O_3 interface, we have performed in situ XPS during # Download English Version: # https://daneshyari.com/en/article/1803421 Download Persian Version: https://daneshyari.com/article/1803421 <u>Daneshyari.com</u>