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a b s t r a c t

We present the results of the Monte Carlo simulations of magnetic nanotubes, which are based on the

plane structures with the square unit cell at low temperatures. The spin configurations, thermal

equilibrium magnetization, magnetic susceptibility and the specific heat are investigated for the

nanotubes of different diameters, using armchair or zigzag edges. The dipolar interaction, Heisenberg

model interaction and also their combination are considered for both ferromagnetic and anti-

ferromagnetic cases. It turns out that the magnetic properties of the nanotubes strongly depend on the

form of the rolling up (armchair or zigzag). The effect of dipolar interaction component strongly

manifests itself for the small radius nanotubes, while for the larger radius nanotubes the Heisenberg

interaction is always dominating. In the thermodynamic part, we have found that the specific heat is

always smaller for the nanotubes with smaller radii.

Crown Copyright & 2008 Published by Elsevier B.V. All rights reserved.

1. Introduction

Since the discovery of carbon nanotubes [1], the electronic,
magnetic and mechanical properties of the nanometric scale
materials have been attracting considerable attention. During the
last few years one could observe a growing interest in the
experimental and theoretical investigations of various new
structures at nano-scale [2–5]. These structures include different
geometric configurations such as fullerenes, nanotubes, nano-
particles, nano-cones, nano-rings and so on. The exploration of
different properties of these objects opens wide perspectives for
applications. One of the potentially interesting aspects of
nanophysics is related to magnetic phenomena. In particular,
experimental and theoretical investigations of the magnetism in
nanostructures stimulates extensive theoretical studies of differ-
ent materials at the nanometric scale, such as pure and doped
different carbon-based materials [6–12] and semiconductor
nanoclusters, ferromagnetic and anti-ferromagnetic nanocrystals
[13–16] and thin films [17]. The new experimental works which
have been done recently in this area opened the way for the
creation of nanotubes based on the composite molecules that

contain metal atoms [18–20]. In this case, we can consider the
nanotube as a tube, composed of rectangular (square, or others)
unit cells with spins situated in the vertices of the unit cells.

The magnetic properties of nano-scale materials look promis-
ing for applications, and this represents a strong motivation for
theoretical investigation. In particular, different types of theore-
tical techniques have been used for the numerical simulations of
magnetic properties such as the spin model with dipolar and
nearest-neighbor interactions [17,21,22], the nearest-neighbor
tight-binding Hamiltonian [11,23–25], the calculations using the
ab initio pack with the spin-polarized density functional theory
[26] and the Monte Carlo simulations [27].

In the present paper, we start a systematic analysis of the
magnetic properties of nanotubes. As a first step, we perform the
theoretical simulations of various properties of the model
magnetic nanotubes based on the geometrically simplest lattice
with the square unit cell. The main target of our study is the
dependence of the thermodynamic and magnetic properties on
geometry. In particular, we explore the difference between the
nanotubes of different diameters and also the dependence on
the type of the rolling which affects, in particular, the form of
the edge. The results of the analysis look rather natural and
one can expect similar dependencies for the more realistic cases
of magnetic nanotubes, e.g., similar to those considered in
Refs. [18–20].
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2. Method of calculations

The purpose of present work is to investigate the possible
influence of the nanotube’s diameter and the type of the edge on
the magnetic properties of nanotubes, based on the plane
structure with the square unit cell. In Fig. 1 one can observe the
two-dimensional plane with the square unit cell of the lattice. The
rolling up corresponding to the armchair nanotubes is indicated
by the vector (m,0) while the rolling up corresponding to the
zigzag nanotubes is indicated by the vector (m,m). The value of the
integer m defined the size of the nanotubes. In this paper, we
are using the terms ‘‘armchair’’ and ‘‘zigzag’’ which are traditional
for the carbon nanotubes. However, we use these terms in the
opposite order, such that they agree with the actual geometry of
the nanotubes under consideration. The geometry here means the
form of the edge: for the case of the armchair the rolling up vector
is passing through the neighboring vertices of the unit cells; for
the case of zigzag this vector is passing through the diagonal
vertices of the unit cells. After rolling, any nanotube is defined by
the pair of integer parameters (m1,m2), which describe its
circumference vector on the initial plane, that is ~L ¼ m1~a1þ

m2~a2, where ~a1;~a2 are unit cell’s vectors (later we used a as a
lattice constant, which we set to unity, a ¼ 1). It proves useful to
introduce the following terminology. The two spins belong to the
same ‘‘line’’ if the vector directed from one of them to another is
parallel to the axis of the magnetic nanotube. So, the space
position of each spin may be characterized by the line and by the
layer.

In what follows, we will explore the spin configurations
obtained using the numerical calculations within the Monte Carlo
method for the nanotubes of different diameters, with the
armchair or zigzag edges, for dipolar interaction, Heisenberg
model interaction and the combinations of these two interactions,
in the ferromagnetic and anti-ferromagnetic cases. We will be
using the nanotubes of the (4,0), (5,0), (6,0), (7,0), (8,0), (12,0),
(4,4), (5,5), (6,6), (7,7), (8,8) and (12,12) types. Obviously, these
nanotubes have different diameters and chiralities. Table 1
contains the radii of these nanotubes. Furthermore, the investi-
gated nanotubes had finite length; in our case they had 9 or 13
layers along the axis. In order to illustrate the geometry of the
structures under consideration, we present a corresponding
picture for the (8,0) and (8,8) cases in Fig. 2. We have investigated
the spin configurations, the thermal equilibrium magnetization,
the susceptibility and the specific heat for these structures. As a
result of this study, one can observe how the spin configurations

depend on the diameter of the nanotube, on the form of the edge
and also on the type of the interactions between spins.

In our simulations we used a Hamiltonian model given by [21]
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In this expression the first sum represents the ferromagnetic (or
anti-ferromagnetic) exchange between the nearest-neighbors
with a coupling constant J, the second sum stands for the coupling
of the spins to an external magnetic field B and the last sum is the
dipolar interaction term, where the coupling o describes the
strength of the dipole–dipole interaction. The ~Si are three-
dimensional magnetic moments of unit length,~eij are unit vectors
pointed from lattice site i to the lattice site j and rij are the
distances between these lattice sites. The correlation between
constant values was chosen as o/J ¼ 0.001, in according to Ref.
[21].

For the numerical analysis of the magnetic nanotubes
described above, we have used the Monte Carlo simulations with
the Metropolis algorithm [28,29]. The Metropolis Monte Carlo
algorithm enables one to obtain the macro-state equilibrium for a
physical system at the given temperature T. The basic idea of this
method consists of the following procedure: we start from some
randomly chosen initial micro-state and then proceed by
performing a very large number of random transformations of
the micro-states, until we arrive at the equilibrium macro-state. In
our case, we start simulations with an initial configuration in
which all spins have parallel directions. Then the direction of one
(randomly chosen) of these spins is randomly changed. In this
way, we arrive at the new micro- and macro-states and evaluate
the change of the overall energy DE compared to the previous
configuration. If DEo0, the temporary direction of the spin
becomes permanent. If DE40, the temporary direction becomes
permanent with the probability exp (�DE/kbT). We repeat this
procedure n ¼ 10,000 multiplied by the factor equal to the
number of sites (spins). The final state corresponds to the stable
configuration and is interpreted as equilibrium macro-state. In
order to fix the number n, the simulation is firstly performed
several times for one particular system. The criterion of the choice
of the number n is that the change of the overall energy DE in the
last steps (at least 20%) must be negligible. These preliminary
calculations show that the equilibrium state is really achieved for
104 Monte Carlo steps per spin and, therefore, this number of
steps is adequate for our calculations. After that, all simulations
have been performed for this choice of n.

In the case of dipolar interaction the spin at the site i was
allowed to interact with all other spins of the nanotube. In the
Heisenberg interaction case the spin at the site i was allowed to
interact only with the nearest-neighboring spins. The same
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Fig. 1. Two-dimensional square unit cell lattice. The indicated vectors are used for

rolling up the armchair and zigzag nanotubes.

Table 1
The radii of the nanotubes expressed in the units of a (unit cell’s size)

Structure Radius (in units of a)

(4,0) 0.6362

(5,0) 0.7958

(6,0) 0.9549

(7,0) 1.1141

(8,0) 1.2732

(12,0) 1.9099

(4,4) 0.9003

(5,5) 1.1254

(6,6) 1.3505

(7,7) 1.5756

(8,8) 1.8006

(12,12) 2.7010
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