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Quantum theory of spin waves in finite samples
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Abstract

We present the formalism for the quantum theory of spin waves in finite samples of arbitrary shape. The sample shape is assumed such

that the magnetization per unit volume and the internal demagnetizing field are constant in direction and magnitude everywhere, though

this restriction may be lifted. We proceed within the framework of continuum theory, with both dipolar interactions and exchange

interactions between the spins included. We derive a prescription for normalizing the spin wave eigenfunctions, and also provide a

representation of the operators associated with the transverse components of the magnetization density. Completeness relations, which

form the basis of expansion of arbitrary functions in terms of spin wave eigenfunctions, are derived as well. The theory may be employed

to describe the interaction of spin wave quanta with external probes and other phenomena where the quantum nature of spin waves

enters. We use the formalism to obtain an expression for the spatial and temperature dependence of the magnetization within a

ferromagnetic nanosphere, at low temperatures where spin wave theory is applicable. We explore this issue with an explicit calculation.
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1. Introduction

In an ordered magnet, of course it has been known for
decades that at sufficiently low temperatures, spin waves
are the elementary excitations responsible for the contribu-
tion of the magnetic degrees of freedom to the thermo-
dynamic properties of the material, and they also control
its response to diverse external probes. In ferromagnets,
under conditions where both dipolar and exchange
interactions must be considered, perhaps the most com-
plete and clearest discussion of the quantum theory of these
excitations may be found in the classic paper of Holstein
and Primakoff [1]. With their theoretical structure in hand,
one may describe physical process in which spin wave
quanta and emitted or absorbed, along with the spin wave
contribution to the thermodynamic properties of the
ferromagnet. The formalism makes use of the plane wave
description of spin waves, appropriate to the infinitely
extended bulk crystal.

In the current era, where nanoscale magnetic structures
are the focus of many studies, the spin wave excitations of
small samples of diverse shape have been explored by many
authors, for reasons similar to those which motivated the
authors of Ref. [1]. On nanometer length scales, it is
necessary to include the influence of exchange interactions
between the spins, as well as the dipolar interactions
between them. The present author and his collaborators
have developed analytic descriptions of the dipole/ex-
change modes of cylindrical wires [2] and spheres [3], and
also the magnetostatic modes of ferromagnetic ribbons of
arbitrary cross section [4]. Various others have used
numerical methods to obtain the frequencies of the
dipole/exchange spin waves of finite structures, along with
their associated eigenfunctions [5–7].
The theoretical studies cited in the previous paragraph

solve the linear eigenvalue problem associated with the
description of spin wave excitations. While the eigenvalues
and eigenfunctions so generated provide very useful insight
into the response characteristics of the sample, the theory is
incomplete. One desires a complete quantum theory of the
spin waves, expressed in terms of the relevant boson
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creation and annihilation operators associated with the
various modes. Without such a theory, one cannot use the
information generated in these studies to obtain a
description of physical processes in which spin wave
quanta are annihilated or created. One cannot obtain a
description of thermodynamic properties of the material as
well, at low temperatures where application of spin wave
theory is appropriate. In the latter area, there are issues of
interest. For example, in the ground state, the magnetiza-
tion will be constant in magnitude and direction every-
where, in samples of suitable shape. However, at finite
temperatures, the amplitude of the thermal fluctuations will
vary from point to point in the sample, with the
consequence that the magnitude of the magnetization will
vary as one scans about the sample. To obtain a
description of such an effect, one requires a quantum
theory of spin waves, which includes a normalization
condition on the eigenfunctions not present in the analyses
examined in papers such as those in Refs. [2–7].

In this paper, we present a quantum theory of spin waves
for samples of arbitrary shape, within the framework of the
continuum theory of spin motions with both dipolar and
exchange interactions between the spins included. We do
confine our attention to samples within which the
magnetization per unit volume is constant in both
magnitude and direction everywhere, in the ground state
at the absolute zero of temperature. It is our view that it
should be possible to extend this discussion to the more
general case where the magnetization varies in direction
from point to point, but we leave this to future studies.

We should comment on the motivation for this study.
We were presented with the need for such a theoretical
structure during the course of the development of the
theory of Brillouin light scattering from the dipole
exchange modes of ferromagnetic nanospheres. This
investigation will be described elsewhere. We were
attracted by intriguing, very brief remarks in Appendix II
of Walker’s classic paper [8] on the magnetostatic modes of
ferromagnetic ellipsoids. In this short Appendix, two
striking and unusual orthogonality relations are displayed.
Its final sentence remarks that with these two relations in
hand, one may diagonalize the Hamiltonian of the system,
though no details are given. We show here this is in fact
that case, also when exchange is included between the
spins. This provides us with the starting point for the
development of the quantum theory of spin waves
described below. We are also led to new completeness
relations and orthogonality relations not noted by Walker.
When all this is assembled, we have in hand a formal
structure which may be used to describe spin wave quanta
and their interaction with external probes in samples of
diverse shape, along with a means to expand any arbitrary
function in terms of their eigenfunctions. The author
views the present discussion as a exploration of the
consequences of the final sentence of a most remarkable
paper, studied by many for decades for reasons rather
different than ours.

2. The formalism

As noted in Section 1, we confine our attention to
samples in which the magnetization per unit volume, ~MS, is
constant in magnitude and direction throughout the
sample, in the ferromagnetic ground state at the absolute
zero of temperature. We also assume that the internal field
~HI is constant in magnitude and direction everywhere, and
parallel to the magnetization. The z-axis of the coordinate
system is aligned parallel to this common direction. The
spin motions may be described by the magnetization
densities mx ~r; tð Þ and myð~r; tÞ. These are viewed for the
moment as classical variables, and later in the discussion
we shall make the transition to regarding them as quantum
mechanical operators. As the spins precess, they generate a
time-dependent magnetic dipole field ~hdð~r; tÞ. In the
magnetostatic limit, this field may be expressed as the
gradient of a magnetic potential FMð r

*
; tÞ, ~hdð~r; tÞ ¼

�~rFMð~r; tÞ.
The equations of motion of the magnetization are well

known forms. In the spin wave limit where the equations
are linearized:

@mx

@t
¼ �g HI �Dr2

� �
my � gMS

qFM

qy
, (1a)

qmy

qt
¼ g HI �Dr2
� �

mx þ gMS
qFM

qx
, (1b)

while the magnetic potential is found from

�r2FM þ 4p
qmx

qx
þ

qmy

qy

� �
¼ 0. (2)

The magnetic potential obeys Laplace’s equation outside
the sample, and we have the boundary conditions that
tangential components of ~hd are conserved, along with the
normal component of ~bd ¼

~hd þ 4p~m. We also append the
free spin boundary conditions on the magnetization at the
sample surface. So we require that

qmx

qn

����
S

¼
qmy

qn

����
S

¼ 0. (3)

It should be remarked that the constructions described
below all go through unchanged in structure if surface
anisotropy is incorporated into the boundary condition in
Eq. (3), and in the energy functional described below. We
omit this complication in the presentation here, in the
interest of simplicity. Finally, we use a convention where
the gyromagnetic ratio g is a positive number.
The spin wave eigenfrequencies Olf g are found by

seeking solutions of Eqs. (1) and (2) of the form mx;yð~r; tÞ ¼
ml

x;yð~rÞ expð�iOltÞ and similarly for the magnetic poten-
tials. Thus, the eigenvalue equations one examines are
given by

iOlm
l
x ~rð Þ ¼ g HI �Dr2

� �
ml

y ~rð Þ þ gMS
qFl

M

qy
, (4a)
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