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Abstract

Motivated by the successful synthesis of several molecular quantum spin rings we are investigating whether such systems can host

magnetic solitary waves. The small size of these spin systems forbids the application of a classical or continuum limit. We therefore

investigate whether the time-dependent Schrödinger equation itself permits solitary waves. Example solutions are obtained via complete

diagonalization of the underlying Heisenberg Hamiltonian.
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1. Introduction

Magnetic solitons are detected in many magnetic systems
due to their special influence on magnetic observables [1–5].
From a theoretical point of view magnetic solitons are
solutions of non-linear differential equations, e.g. of the
cubic Schrödinger equation [6–8], which result from
classical approximations of the respective quantum spin
problem. The cubic Schrödinger equation, for instance
is obtained if the spins are replaced by a classical spin
density [6].

Due to the success of coordination chemistry one can
nowadays realize finite size quantum spin rings in the form
of magnetic ring molecules. Such wheels—Fe6, Fe10, and
Cr8 rings as the most prominent examples—are almost
perfect Heisenberg spin rings with a single isotropic
antiferromagnetic exchange parameter and weak uniaxial
anisotropy [9–12].

The aim of the present article is to discuss whether
solitary waves can exist on such spin rings and if they do,

how they look like. The finite size and the resulting
discreteness of the energy spectrum forbid any classical or
continuum limit. We therefore investigate, whether the
ordinary linear time-dependent Schrödinger equation
allows for solitary waves. Solitary excitations in quantum
spin chains of Ising or sine-Gordon type have already been
discussed [7]. Nevertheless, such soliton solutions are
approximate in the sense that a kind of Holstein–Primakov
series expansion is applied, and the results are accurate
only for anisotropies large compared to the spin–spin
coupling [7]. This article deals with antiferromagnetic
Heisenberg chains without anisotropy, where such deriva-
tions cannot be applied. Starting from the time-dependent
Schrödinger equation therefore automatically addresses the
questions how soliton solutions might be approached
starting from a full quantum treatment—a question that
to the best of our knowledge is not yet answered [13].
In order to apply the concept of solitons or solitary

waves to the linear Schrödinger equation some redefini-
tions are necessary. The first redefinition concerns the term
soliton itself. It is mostly used for domain-wall-like solitons
which are of topological character. It is also applied to
localized deviations of the magnetization or energy
distribution (envelope solitons), here one distinguishes
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between bright and dark solitons. We will generalize this
class of objects and speak only of solitary waves in the
following. We call a state jCs i solitary wave if there exists
a time t for which the time evolution equals (up to a global
phase) the shift by one site on the spin ring. This means
that solitary waves travel with permanent shape. The
property that two solitons scatter into soliton states cannot
be used as a definition in the context of the Schrödinger
equation since it is trivially fulfilled for a linear differential
equation.

A non-trivial question concerns useful observables in
order to visualize solitary waves jCs i. The expectation
value of the local operator s

�
zðiÞ, which reflects a local

magnetization is used classically and meaningful also
as a quantum mechanical expectation value. Then non-
trivial, i.e. non-constant magnetization distributions
hCs j s

�
zðiÞ jCs i arise only for those solitary waves which

possess components with a common total magnetic
quantum number M, because matrix elements of s

�
zðiÞ

between states of different total magnetic quantum num-
ber vanish. The energy density which in classical calcula-
tions is also used to picture solitons, could quan-
tum mechanically be defined as s

�
ðiÞ � s
�
ði þ 1Þ starting

from a Heisenberg Hamiltonian, compare Eq. (1). It turns
out that this observable is not so useful since it is
featureless in most cases because the off-diagonal elements
for energy eigenstates belonging to different total spin S are
zero.

The article is organized as follows. In Section 2 we
shortly introduce the Heisenberg model and the used
notation, while in Section 3 solitary waves are defined. We
will then discuss the construction and stability of (approx-
imate) solitary waves in Section 4. A number of example
spin systems will be investigated in Section 5. The article
closes with conclusions in Section 6.

2. Heisenberg model

The Hamilton operator of the Heisenberg model
with antiferromagnetic, isotropic nearest neighbor interac-
tion between spins of equal spin quantum number s is given
by

H
�
� 2

XN

i¼1

s
�
ðiÞ � s
�
ði þ 1Þ; N þ 1 � 1. (1)

H
�

is invariant under cyclic shifts generated by the shift
operator T

�
. T
�
is defined by its action on the product basis

jm i

T
�
jm1; . . . ;mN i � jmN ;m1; . . . ;mN�1 i, (2)

where the product basis is constructed from single-particle
eigenstates of all s

�
zðiÞ

s
�

zðiÞ jm1; . . . ;mN i ¼ mi jm1; . . . ;mN i. (3)

The shift quantum number k ¼ 0; . . . ;N � 1 modulo N

labels the eigenvalues ofT
�
which are the Nth roots of unity

z ¼ exp �i
2pk

N

� �
. (4)

k is related to the ‘‘crystal momentum’’ via p ¼ 2pk=N.
AltogetherH

�
,T
�
, the squareS

�

2, and the z-componentS
�

z of
the total spin are four commuting operators.

3. Solitary waves

We call a state jCs i solitary wave if there exists a time t
for which the time evolution equals (up to a global phase)
the shift by one site on the spin ring either to the left or to
the right, i.e.

U
�
ðtÞ jCs i ¼ e�iF0T

�

�1 jCs i. (5)

Decomposing jCs i into simultaneous eigenstates jCn i of
H
�
andT

�
,

jCs i ¼
X
n2Is

cn jCn i, (6)

yields the following relation:X
n2Is

e�iðEnt=_Þcn jCn i ¼ e�iF0

X
m2Is

e�ið2pkm=NÞcm jCm i. (7)

The set Is contains the indices of those eigenstates which
contribute to the solitary wave. Therefore,

Emt
_
¼ �

2pkm

N
þ 2pmm þ F0 8m 2 Is

with mm 2 Z. ð8Þ

Eq. (8) means nothing else than that solitary waves are
formed from such simultaneous eigenstates jCn i ofH

�
and

T
�
which fulfill a (generalized) linear dispersion relation.
Since our definition (8) is rather general it comprises

several solutions. Some of them are rather trivial waves
whereas others indeed do possess soliton character:

� Single eigenstates jCn i of the Hamiltonian fulfill the
definition, but they are of course stationary and they
possess a constant magnetization distribution. One
would not call these states solitary waves or solitons.
� Superpositions of two eigenstates jCm i and jCn i with
different shift quantum numbers km and kn are also
solutions of definition (8) since two points are always on
a line in the E–k-plane. It is clear that such a state
cannot be well localized because of the very limited
number of momentum components. Nevertheless, these
states move around the spin ring with permanent shape.
An example of such solitary waves are superpositions
consisting of ground state and first excited state which
have already been investigated under a different focus
[14]. The characteristic time t to move by one site is related
to the frequency of the coherent spin quantum dynamics
discussed for these special superpositions [14,15].
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