

Available online at www.sciencedirect.com

Enzyme and Microbial Technology 40 (2007) 947-953

www.elsevier.com/locate/emt

Evaluation of three methods for enriching H₂-producing cultures from anaerobic sludge

Yang Mu, Han-Qing Yu*, Gang Wang

School of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China Received 19 May 2006; received in revised form 14 July 2006; accepted 21 July 2006

Abstract

Hydrogen can be harvested from the microbial fermentation of organic substrates when methanogenesis is suppressed in an anaerobic digestion system. In this study three methods, heat-, acid- and alkaline-treatment, were used to suppress methanogenesis in mixed cultures and to enrich H_2 -producing inoculum. Highest H_2 yield of 2.00 mol- H_2 /mol-glucose was achieved with the heat-treated sludge, while lowest yield of 0.48 mol- H_2 /mol-glucose was obtained with the alkaline-treated sludge. A butyrate-type fermentation was found for both heat- and alkaline-treated sludge, while a mixed-type fermentation occurred for the acid-treated sludge. A model was established to describe the kinetics of H_2 production process and the yield coefficients of various products were estimated for the three cases with this model. The relationships among NADH/NAD⁺, oxidation–reduction potential and the H_2 partial pressure were established and the evolvement of NADH/NAD⁺ and oxidation–reduction potential in the fermentative process for the three cases was also evaluated. The comparative experimental results show that the heat-treatment method was better than the two others for enriching H_2 -producing inoculums from mixed anaerobic cultures. © 2006 Elsevier Inc. All rights reserved.

Keywords: Acid-treated; Alkaline-treated; Anaerobic sludge; Heat-treated; Hydrogen; NADH/NAD+

1. Introduction

Research on alternative energy sources has gained renewed interest, due to global awareness of accumulated carbon dioxide in the atmosphere as a potential cause of climate change [1]. Combustion of H₂ produces no greenhouse gases, and has a high-energy yield of 122 kJ/g, which is 2.75-fold greater than that of hydrocarbon fuels. Thus, utilization of H₂ as a clean energy source seems to be promising. The feasibility of applying acidogenesis of organic wastes to produce H₂ has been widely demonstrated at various laboratories [2–4]. Compared with photosynthetic bacteria, dark fermentative bacteria produce H₂ at a lower cost, because they do not need light provision and have simple requirements for microbial growth. In previous studies both pure cultures such as *Clostridium* sp. and mixed cultures of anaerobic bacteria, have been used to convert carbohydrates (e.g., glucose) to H₂ [5–8].

To scale-up biological H_2 production processes, getting a large amount of anaerobic H_2 -producing inoculums economi-

0141-0229/\$ - see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.enzmictec.2006.07.033 cally becomes crucial [7,9]. Previous studies have demonstrated that operation at a low pH and short sludge retention time, or seeding with heat-shocked sludge, is able to suppress the growth of methanogens and accordingly to enhance H₂ production. The acid-treated method and heated-shocked method have been, respectively, used in previous studies [7,8,10]. The effectiveness of pH control for enhancing H2 production have been demonstrated in batch tests [10]. The heat-treatment has been found to be an alternative for enriching H₂-producing inoculum from natural anaerobic cultures [7]. The heat- and acid-treated methods have been also compared for hydrogen production and a greater H₂ yield was observed in the heat treatment than that in the acid treatment [11]. Recently, it was found that H₂ production could also be enhanced from sewage sludge with alkaline pretreatment [12]. However, little information is available to evaluate the effectiveness of these three enrichment methods for H₂-producing cultures in parallel. Moreover, the evolvement of NADH/NAD⁺ and oxidation-reduction potential (ORP) with the H₂ partial pressure in the fermentation process has not been elucidated in these previous studies.

Therefore, in this study H₂-producing inoculum was enriched by using heat-, acid- and alkaline-treatment in parallel, and their effectiveness was evaluated and compared in a fermentor oper-

^{*} Corresponding author. Tel.: +86 551 3607592; fax: +86 551 3601592. *E-mail address:* hqyu@ustc.edu.cn (H.-Q. Yu).

ated in a batch mode. The profiles of H_2 production, substrate consumption and product formation were monitored for the three cases, and the kinetics of H_2 production was also explored. Moreover, the relationships between NADH/NAD⁺, ORP and the H_2 partial pressure, and the evolvement of NADH/NAD⁺ and ORP in the fermentation process for the three cases were investigated.

2. Materials and methods

2.1. Seed sludge

The anaerobic microflora used in this study was obtained from a full-scale upflow anaerobic sludge blanket reactor located in Benpu, China. This reactor is being operated for the treatment of soybean-processing wastewater and production of CH₄. Prior to use, the seed sludge was first washed five times with tap water, and was then sieved to remove stone, sand and other coarse matters. Thereafter, heat-, acid- and alkaline-treatments were, respectively, performed to inactive hydrogentrophic methanogens and to enrich H₂-producing bacteria. For the heat-treatment case the seed sludge was heated at 102 °C for 90 min [13]. For the acid-treatment, the sludge was adjusted to acidic pH (pH 3.0–4.0) with 0.1N HCl for 24 h, and was then adjusted back to pH 7.0 with the addition of 0.1N NaOH [10]. For the alkaline-treatment, the sludge was pretreated with adding 4 M NaOH and the pH was kept at 12.0 for 24 h, and was then adjusted back to pH 7.0 with the addition of 0.1N HCl [12]. The temperature was around 25 °C for both acid- and alkaline-treatments.

2.2. Experiments

Hydrogen production experiments were conducted in triplicate in a 5-L fermentor (Baoxin Biotech Ltd., Shanghai) equipped with an impeller and four baffles. Agitation of the fermentation broth was provided by using a six-bladed impeller. One litre of heat-, acid- or alkaline-treated anaerobic sludge with volatile suspended solids (VSS) of 18.0 g/L and 3 mL of nutrients solution were added to the fermentor. The working volume was adjusted to 3.0 L with distilled water. The solution in the fermentor was composed as follows (unit in mg/L): sucrose 25,000; NH₄HCO₃ 2025; K₂HPO₄·3H₂O 800; CaCl₂ 50; MgCl₂·6H₂O 100; FeCl₂ 25; NaCl 10; CoCl₂·6H₂O 5; MnCl₂·4H₂O 5; AlCl₃ 2.5; (NH₄)₆Mo₇O₂₄ 15; H₃BO₄ 5; NiCl₂·6H₂O 5; CuCl₂·5H₂O 5; ZnCl₂ 5. Prior to operation, the fermentor was purged with nitrogen gas for 10 min to ensure anaerobic conditions.

The pH of the mixed liquor was kept at constant by feeding 4 M NaOH or 2 M HCl solutions via respective peristaltic pumps. The agitation rate in the fermentor was kept at 120 rpm. A biogas sampling port was installed between the meter and the reactor to allow direct biogas sampling with a syringe. In each trail, the pH of the mixed liquor was chosen as 5.5, which was reported to be optimum for H₂ production by mixed anaerobic cultures [14,15]. The temperature was kept at 35.0 °C with a temperature controller, and the initial sucrose concentration was 25 g/L.

2.3. Analytical methods

The amount of biogas produced was recorded using water-replace method. The biogas composition was analyzed by using a gas chromatograph (Lunan, Model SP-6800A) equipped with a thermal conductivity detector and a 1.5 m stainless-steel column packed with 5 Å molecular sieve. The temperatures of injector, detector and column were kept at 100 °C, 105 °C and 60 °C, respectively. Argon was used as carrier gas at a flow rate of 30 mL/min. The concentrations of ethanol and volatile fatty acids (VFA), including acetate, propionate, butyrate, *i*-butyrate, valerate, and caporate in the effluent were determined by second gas chromatograph (Agilent, Model 6890NT) equipped with a flame ionization detector and a 30 m × 0.25 mm × 0.25 µm fused-silica capillary column (DB-FFAP). The liquor samples were first centrifuged at 12,000 rpm for 5 min, and were then acidified by formic acid and filtrated through 0.2 µm membrane and finally measured for free acids. The temperatures of the injector and detector

were 250 °C and 300 °C, respectively. The initial temperature of oven was 70 °C for 3 min followed with a ramp of 20 °C/min for 5.5 min and to final temperature of 180 °C for 3 min. Nitrogen was used as carrier gas with a flow rate of 2.6 mL/min. The sucrose concentration was measured using anthrone-sulfuric acid method [16]. VSS concentration was measured according to Standard Methods [17].

A following modified Logistic equation was employed to model the kinetics of biohydrogen production [19]:

$$H = \frac{H_{\text{max}}}{1 + \exp[((R_{\text{max}, \text{H}_2} \times e)/H_{\text{max}})(\lambda - t) + 1]}$$
(1)

where H (mL) is the total amount hydrogen produced at reaction time t (h), H_{max} (mL) the potential maximal amount hydrogen produced, R_{max} (mL/h) the maximum hydrogen production rate and λ (h) is the lag time to exponential hydrogen production.

Once cumulative hydrogen production curves were obtained over the course of an entire batch experiment, a curve was drawn using the modified Logistic equation and the values of H_{max} , R_{max} , λ , H_{max} and R_{max} were also determined. The data were analyzed by using software Origin 6.1 in the study.

3. Results and discussion

3.1. Substrate degradation

The degradation profiles of sucrose with acid-, heat- and alkaline-treated sludge are illustrated in Fig. 1. After a lag time, sucrose was degraded rapidly and became nearly depleted within 45 h in the three cases (Fig. 1).

3.2. H_2 production

The H₂ partial pressure profiles in the reactor headspace were in accord with the conversion of sucrose to H₂ for the three cases and no methane was detected (Fig. 2). This might be due to the fact that, in the enrichment, the H₂-utilizing methanogens were inactivated or inhibited, but that the H₂-producing microorganisms, e.g., clostridia, survived. These endospores are resistant to heat, and cannot be inactivated easily even by harsh chemicals [18]. After the end of lag phase, the H₂ partial pressure increased and peaked of 0.61 atm for the heat-treated sludge at hour 26, 0.59 atm for the acid-treated one at hour 23.3, and 0.51 atm for the alkaline-treated one at hour 27. Then, the H₂ partial pressure declined for the three cases. Such a decrease was

Fig. 1. Sucrose degradation profiles for the heat-, acid- and alkaline-treated sludge.

Download English Version:

https://daneshyari.com/en/article/18061

Download Persian Version:

https://daneshyari.com/article/18061

Daneshyari.com