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Permutation testing has been widely implemented in voxel-based morphometry (VBM) tools. However,
this type of non-parametric inference has yet to be thoroughly compared with traditional parametric
inference in VBM studies of brain structure. Here we compare both types of inference and investigate what
influence the number of permutations in permutation testing has on results in an exemplar study of how
gray matter proportion changes with age in a group of working age adults. High resolution T1-weighted
volume scans were acquired from 80 healthy adults aged 25–64 years. Using a validated VBM procedure
and voxel-based permutation testing for Pearson product-moment coefficient, the effect sizes of changes in
gray matter proportion with age were assessed using traditional parametric and permutation testing
inference with 100, 500, 1000, 5000, 10000 and 20000 permutations. The statistical significance was set at
P b 0.05 and false discovery rate (FDR) was used to correct for multiple comparisons. Clusters of voxels
with statistically significant (PFDR b 0.05) declines in gray matter proportion with age identified with
permutation testing inference (N ≈ 6000) were approximately twice the size of those identified with
parametric inference (N = 3221 voxels). Permutation testing with 10000 (N = 6251 voxels) and 20000
(N = 6233 voxels) permutations produced clusters that were generally consistent with each other.
However, with 1000 permutations there were approximately 20% more statistically significant voxels
(N = 7117 voxels) than with ≥10000 permutations. Permutation testing inference may provide a more
sensitive method than traditional parametric inference for identifying age-related differences in gray
matter proportion. Based on the results reported here, at least 10000 permutations should be used in future
univariate VBM studies investigating age related changes in gray matter to avoid potential false findings.
Additional studies using permutation testing in large imaging databanks are required to address the impact of
model complexity, multivariate analysis, number of observations, sampling bias and data quality on the
accuracy with which subtle differences in brain structure associated with normal aging can be identified.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Brain MRI data are often analyzed using parametric statistical
methods, for example the general linear model (GLM) [1–3]. These
methods make a number of assumptions about the generation and
statistical distributions of these imaging data. Specifically, subject
samples are assumed to have been acquired randomly from their
population and distributions of data are assumed to be approximately
statistically normal, or “Gaussian” [4–6]. Previous seminal work in

voxel-based morphometry (VBM) has used voxel-wise smoothing, i.e.
averaging, to circumvent the issue of statistical normality [1,2].
Permutation testing was proposed at a similar time [7], and has recently
been widely implemented in VBM methods, for example FMRIB
Software Library (FSL; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise),
to address the assumptions of random samples and homoscedasticity
[8,9]. Current implementations of permutation testing in VBM are
optimized for t-tests and analysis of variance (ANOVA). These provide
robust tools for assessing differences in, for example, the proportion of
gray matter voxels between two or more groups. Reductions in gray
matter volume are a commonly observed feature of normal aging [10],
and are also seen in diseases such as amyotrophic lateral sclerosis [11],
epilepsy [12], Alzheimer's disease [13] and schizophrenia [14]. However,
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differences in tissue structure can be subtle and difficult to identify
consistently between studies [14,15].

Effect size statistics, for example Cohen's d for two groups or
Pearson product-moment coefficient (r) for continuous data such as
age [16,17], may be a useful addition to imaging statistics derived
from existing implementations of permutation testing. Measures of
effect size provide standardized results that can be more easily
compared across different studies and populations [16,17]. However,
the influence of parametric versus permutation inference for effect
sizes and the impact of the number of permutations on results have
not yet been formally tested in VBM studies.

In the present study we therefore describe a framework for
permutation testing of effect size in VBM studies of brain structural
MRI data. We then compare parametric and permutation testing
inference and assess the impact of the number of permutations on
the latter in an exemplar study of changes in brain gray matter
proportion with age in structural MRI data acquired from a cohort of
healthy subjects with ages spanning normal working age adulthood.

2. Materials and methods

2.1. Subjects

Eighty clinically normal, right-handed, healthy volunteers (40
males, 40 females) aged 25–64 (median 43, IQR 17) years were
recruited by advertisement from staff working at the University of
Edinburgh, the Western General Hospital and the Royal Infirmary,
Edinburgh, United Kingdom. All subjects gave written informed
consent. Health status was assessed using medical questionnaires
and all structural MRI scans were reported by a fully qualified
neuroradiologist. To aid identification of age-related differences in
brain volumes, the cohort was divided into four 10-year age bands as
detailed in Table 1.

2.2. MRI acquisition

All brain MRI data were acquired using a GE Signa Horizon HDxt
1.5 T clinical scanner (General Electric, Milwaukee, WI, USA)
equipped with a self-shielding gradient set (33 mT m−1 maximum
gradient strength) and manufacturer supplied 8-channel phased-
array head coil. The imaging protocol consisted of whole brain axial
T2-, T2*- and FLAIR-weighted structural sequences, and a high
resolution 3D T1-weighted inversion-recovery-prepared fast spoiled
gradient-echo (FSPGR) volume scan acquired in the coronal plane
with 180 contiguous 1.3 mm thick slices resulting in voxel
dimensions of 1 × 1 × 1.3 mm.

2.3. Voxel-based morphometry

The T1-weighted volume scans were first converted from DICOM
to NIfTI–1 format (http://nifti.nimh.nih.gov/nifti-1) using MRIcron's
“dcm2nii” tool (http://www.nitrc.org/projects/mricron). A modified
FSL-VBM pipeline was then employed to process these imaging data
and produce gray matter proportion volumes for each subject. The
first step in this pipeline consisted of randomly selecting a subject for

manual, slice-by-slice, brain extraction. This subject was then
non-linearly registered to all other subjects to produce initial brain
masks for the whole cohort [18]. These initial brain masks were
manually edited slice-by-slice and applied to the raw imaging data to
produce brain extracted T1-weighted volumes for each subject.
These brain extracted T1-weighted volumes were then processed
using the standard FSL-VBM pipeline [19]. Briefly, each subject's
T1-weighted scanwas segmented into graymatter, white matter and
cerebrospinal fluid volumes using signal intensity and spatial
information [20]. These gray matter volumes contained the
proportion of gray matter tissue within each voxel in native space.
No subject had white matter hyperintensities on FLAIR-weighted
MRI (hypointense on T1-weighted MRI) which might confound the
gray matter segmentations. After segmenting these three tissue
types, all data were aligned to Montréal Neurological Institute (MNI)
standard space. A study specific atlas was created by registering all
subjects to the initial average of all subjects aligned in MNI space.
The gray matter proportion volumes were then smoothed using a
3 mm Gaussian kernel in standard space. There are currently no
standard optimal parameters for Gaussian kernels [21], and our
reasoning for choosing 3 mm smoothing was that, based on visual
assessment of the imaging data, it provided a reasonable middle
ground between removing noise and maintaining the underlying
anatomy. Finally, a 4D volume of voxel-wise gray matter proportions
was created by concatenating all individual gray matter volumes
together in the axial direction in standard space; effect sizes and
P-values were then calculated using this cohort 4D volume.

2.4. Permutation testing for effect sizes

We provide the Pearson product-moment coefficient (r) as a
measure of effect size. This was proposed as a measure of effect size
by Cohen [16] and is valid for continuous variable data. Absolute
effect sizes of approximately ±0.1 are considered small, approxi-
mately ±0.3 medium and approximately ±0.5 large [16]. Effect size
r was calculated using Eq. (1)
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where n is the number of pair-wise observations, x is the mean of
variable x, y is the mean of variable y, σx is the standard deviation
(SD) of variable x and σy is the SD of variable y. In the present study, x
is age and y is gray matter proportion in each voxel.

Permutation testing is a very simple concept. For i permutations
(for example 1000), the order of independent variables is randomly
shuffled and the test statistic of interest (in this case, effect size) is
calculated in each random permutation (see Fig. 1). This is
supposedly equal to producing 1000 pseudo random samples and
the P-value of the effect size is defined as the number of times this
effect size could be produced by chance, i.e. in each random
permutation of the data (see Fig. 1).

We report bothparametrically defined P-values andnon-parametric
permutation testing P-values for effect sizes with the latter assessed
using 100, 500, 1000, 5000, 10000 and 20000 permutations. For 20000
permutations the smallest achievable P-value is 0.00005, a value twenty
times smaller than that used in previous “extensive simulations” [9].
False discovery rate (FDR)was used to correct formultiple comparisons
[22–24], andwe provide 1-PFDR corrected and 1-P uncorrected volumes
as outputs. Alpha (P-value cut off) and lambda (FDR corrected P-value
cut off) were set at 0.05.

Table 1
Demographics of the cohort.

Age group (years) Number

25–34 21
35–44 23
45–54 24
55–64 12
25–64 80
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