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Purpose: Diffusional kurtosis imaging (DKI) is sensitive to the effects of signal noise due to strong diffusion
weightings and higher order modeling of the diffusion weighted signal. A simple noise correction scheme is
proposed to remove the majority of the noise bias in the estimated diffusional kurtosis.
Methods:Weighted linear least squares (WLLS) fitting together with a voxel-wise, subtraction-based noise
correction from multiple, independent acquisitions are employed to reduce noise bias in DKI data. The
method is validated in phantom experiments and demonstrated for in vivo human brain for DKI-derived
parameter estimates.
Results: As long as the signal-to-noise ratio (SNR) for the most heavily diffusion weighted images is
greater than 2.1, errors in phantom diffusional kurtosis estimates are found to be less than 5 percent
with noise correction, but as high as 44 percent for uncorrected estimates. In human brain, noise
correction is also shown to improve diffusional kurtosis estimates derived from measurements made
with low SNR.
Conclusion: The proposed correction technique removes the majority of noise bias from diffusional kurtosis
estimates in noisy phantom data and is applicable to DKI of human brain. Features of the method include
computational simplicity and ease of integration into standard WLLS DKI post-processing algorithms.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The magnitude reconstruction typically used in MRI combines the
real and imaginary components of a complex spatial signal so that the
resulting image is independent of the arbitrary phase setting and is not
affected by phase artifacts [1]. However, this non-linear operation
transforms the Gaussian (normal) distribution of randomnoise for the
real and imaginary component images and thereby introduces a
positive bias for the magnitude signal that is inversely related to the
signal-to-noise ratio (SNR) [2,3].

For many MRI sequences, the SNR is sufficiently high so that
this noise bias is negligible. However, several quantitative imaging
techniques, such as diffusion, perfusion, and functional MRI, utilize
echo-planar imaging (EPI), which has relatively poor SNR [4]. For
diffusion MRI, the SNR is further reduced by diffusion weighting of
the signal [5]. As a result, diffusion weighted images (DWIs) and
diffusion parameters estimated from DWIs are particularly sus-
ceptible to the effects of noise [6]. For example, noise bias may

significantly alter estimates for both the mean diffusivity (MD) and
fractional anisotropy, as conventionally obtained with diffusion
tensor imaging (DTI) [6–9].

Diffusional kurtosis imaging (DKI) is an increasingly utilized
diffusion MRI technique, which extends DTI by relaxing the assump-
tion that the displacement of water via diffusion in biological tissue
follows a Gaussian distribution (NB: the distribution of water
displacements should not be confused with the noise distribution)
[10,11]. As a result, DKI includes the diffusional kurtosis in the DWI
signal model through the 4th order cumulant expansion of the
displacement distribution [10,11]. In order to more accurately
characterize the DWI signal from restricted diffusion that occurs in
biological tissues [12], DKI employs a more complicated signal model
that includes higher order terms in the b-value, which typically
requires the use of larger maximum b-values [10,11,13]. As a result,
parameter estimation for DKI can be more sensitive to noise effects
than for DTI [14–17], which limits the attainable resolution.
Furthermore, certain regions of interest (ROIs) in the brain, such as
the globus pallidus, have a relatively low SNR due to a high tissue iron
concentration that shortens T2 [18]. As a result, noise disproportion-
ately affects diffusion parameter estimation in these regions. It may
therefore be beneficial to implement a noise correction scheme that
can remove the majority of noise bias from DKI data and thereby
improve the accuracy of DKI-derived diffusion parameter estimates.
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Noise correction is complicated by the fact that the variance of
noise is not known a priori and must typically be estimated from
characteristics of the reconstructed images [19–21]. Two methods
that have been used previously involve calculation of the mean
or standard deviation of background noise level or calculation of
the variance of the image intensity over a spatial ROI [19–25].
Although the noise bias can theoretically be estimated by the
mean or standard deviation of the background noise [19–21], this
method is problematic for noise correction in DKI because EPI
sequences are susceptible to image artifacts in the background
region [26,27], which can lead to an overestimation of the noise
bias. Measuring the variance of intensity values within a spatial
ROI may also be unreliable, because a spatially homogeneous ROI
may be difficult or impossible to find and intrinsic variability in the
spatial signal also leads to an overestimation of the noise bias. As
a result, voxel-wise noise estimations from multiple, independent
acquisition schemes are preferred over single acquisition methods
[22,25]. In addition, ROI-based noise estimates are not suitable
for spatially varying noise distributions, as may result from the use
of parallel imaging, which also requires the noise level to be estimated
in avoxel-wisemanner [28–31]. Sinceparallel imaging is routinelyused
to decrease signal acquisition time, background noise estimators are
almost never preferred to voxel-wise methods. The major drawbacks
to multiple acquisition schemes are increased scan time and increased
signal variance from non-thermodynamic factors such as patient
motion or pulsatile changes.

There are a wide variety of noise correction methods available,
including those that utilize lookup tables [3], global correction via a
single noise correction term [19–21], non-linear maximum likeli-
hood (ML) or maximum a posteriori (MAP) estimation which
utilize Bessel functions in the measured signal model [12,25,32],
nonlocal maximum likelihood estimation which sample neighbor-
ing voxels to determine spatially varying noise statistics [33,34],
nonlinear diffusion filtering for spatially varying noise [35],
spatially varying noise corrections involving confluent hypergeo-
metric functions [31,36], and multistep weighting strategies to
remove errors that can be introduced through the estimated weight
factors [37]. Although the more complicated noise correction
techniques may have desirable theoretical properties under certain
circumstances, they can be difficult to implement, require nonlin-
ear optimization, and/or involve iterative fitting algorithms, which
can be computationally demanding and may not guarantee a
unique solution. DKI is well suited for linear estimation techniques
because the system of equations can readily be linearized; however,
ML estimation has also been applied to DKI data with spatially
varying noise levels for robust parameter estimation [12]. For a
comprehensive discussion on the effects of different fitting
strategies in diffusion MRI, the reader is directed to the work of
Veraart et al. [37,38].

The goal of this work is to describe a simple method for noise
correction which is both straightforward to implement and
removes the majority of the noise bias for DKI with low SNR.
Our approach takes into account both the noise bias of the DWI
signal, as well as the dependence of the noise variance on the
signal magnitude that results from the Rician distribution [2,3,21].
We consider a weighted linear least squares (WLLS) DKI analysis
and propose a new set of weight factors to reduce the noise bias in
the DKI parameter estimates. These weight terms account for the
varying degrees of noise variance in the measured diffusion signal
assuming the noise in each independent scan is well-described by
a Rician distribution. The noise correction terms are calculated
from a voxel-wise noise map estimated from multiple image
acquisitions, thereby accommodating for spatially varying noise
[31]. This noise correction scheme is compatible with well-
established DKI analysis procedures [13]. By preserving the

linearity of the estimation problem, our approach guarantees a
unique solution with minimal computational demands.

2. Theory

2.1. Noise correction in diffusion MRI

We consider first the DKI signal model for an individual voxel:

S gð Þ ¼ S0e
−bD nð Þþ1

6b
2D2 nð ÞK nð Þ

; ð1Þ

where S(g) is the theoretical diffusion signal for a diffusion encoding
gradient vector, g, S0 is the diffusion signalwithnodiffusionweighting,
and D(n) and K(n) are the directional diffusivity and the diffusional
kurtosis, respectively, along the normalized vector n ¼ g=

ffiffiffi
b

p
[10,11].

Here we have defined g ¼
ffiffiffi
b

p
n , with b being the b-value which

summarizes the stength of the diffusion weighting and n being the
normalized diffusion encoding gradient direction.

The signal model in Eq. (1) describes the fourth-order cumulant
expansion of the diffusion signal, which accounts for the leading
effects of restricted, non-Gaussian diffusion on the diffusionMR signal,
provided the b-value is not too large. However, in magnitude MR
images, the measured signal is a biased estimator of the theoretical
signal, and the expected value of themeasured signal is always greater
than the expected value of the theoretical signal [3]. The difference
between these two quantities is termed the noise bias.

If we consider Rician distributed noise and, for the moment,
assume the noise variance, σ2, in the channels of the receive coil is
known, then the expected value of the measured signal squared for
arbitrary SNR is given by [2,19,20]:

M2
D E

¼ S2
D E

þ 2σ2
; ð2Þ

where the brackets denote the expected value of a random variable
andM and S refer to themeasured and theoretical signals, respectively.

Eq. (2) demonstrates a few key features of the effects of noise in
magnitude MR images. First, noise adds in quadrature, and so in
applying noise correction it is natural to consider the squares of the
measured and ideal signals, sometimes termed power images [19].
Second, the variance of noise, σ2, does not depend on the signal
amplitude or the applied b-value. Nonetheless, the noise bias in the
root mean square (RMS) measured signal estimator will depend on
the signal amplitude because of the nonlinearity of Eq. (2), which is
the source of systematic bias in diffusion parameter estimates
taken from noisy DWIs. Consequently, for low b-value (high SNR)
images the theoretical signal is typically sufficiently strong so that
noise bias is negligible. However, for high b-value (low SNR)
images, the noise bias accounts for a larger portion of the measured
signal, and it becomes important to account for the effects of noise
in the data analysis.

During a diffusion MR experiment, we acquire voxel-wise
estimates for the measured signal in Eq. (2) over a pre-determined
set of diffusion weighting gradient vectors. The expected value for
the noise corrected signal squared for a given gradient vector can
then be estimated by [19,20]:

S2g
D E

¼ M2
g

D E
−η2; ð3Þ

where we have defined the noise parameter term, η2 = 2σ2, and the
subscript g denotes the applied diffusion weighting gradient vector,
g. We have converted the variable g from a functional argument in
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