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In blind compressed sensing (BCS), both the sparsifying dictionary and the sparse coefficients are estimated
simultaneouslyduring signal recovery. A recent study adopted theBCS framework for recoveringdynamicMRI
sequences from under-sampled K-space measurements; the results were promising. Previous works in
dynamic MRI reconstruction showed that, recovery accuracy can be improved by incorporating low-rank
penalties into the standard compressed sensing (CS) optimization framework. Ourwork ismotivated by these
studies, and we improve upon the basic BCS framework by incorporating low-rank penalties into the
optimization problem. The resulting optimization problemhas not been solvedbefore; hencewe derive a Split
Bregman type technique to solve the same. Experiments were carried out on real dynamic contrast enhanced
MRI sequences. Results show that,with our proposed improvement, the reconstruction accuracy is better than
BCS and other state-of-the-art dynamic MRI recovery algorithms.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this work, we address the problem of reconstructing a dynamic
MRI sequence from its under-sampled K-space frames. The data
acquisition is expressed as follows:

yt ¼ Rt Fxt þ η; η∼N 0;σ2
� �

ð1Þ

where xt denotes the tth frame to be reconstructed, F is the Fourier
transform, Rt is the K-space sampling mask for the said instant, yt is
the acquired K-space samples and η is the noise.

Assuming that there are T such frames, (1) can be compactly
represented as:

vec Yð Þ ¼ Φvec Xð Þ þ η ð2Þ

where Y = [y1| … |yT], X = [x1| … |xT] and Φ = BlockDiag(RtF).
The problem is to recover, X given Y and Φ. Usually compressed

sensing (CS) [1–3] based techniques are employed to recover them. CS
exploits the spatio-temporal redundancy of the sequence X in order to
recover it. The spatio-temporal redundancy leads to sparsity in a
transform domain, and CS techniques utilize this sparsity for recovery.

There is an alternate reconstruction approach that departs from
standard CS techniques. The dynamic MRI sequence X is low-rank.

This is because the frames are temporally correlated, and hence the
columns of X are not independent. Based on this argument, it was
shown [4] that low-rank matrix recovery techniques can be
employed to recover the dynamic MRI sequence. Unfortunately,
this method cannot compete with CS based reconstruction tech-
niques in terms of accuracy.

Some recent studies proposed combining CS based ap-
proaches with low-rank recovery techniques [5–7]. These papers
showed that, such combined approaches yield better results
than using sparsity based techniques or low-rank recovery
techniques individually.

Recently blind compressed sensing (BCS) formulation was
proposed [8]. CS assumes that the sparsifying basis is known a
priori. BCS argues that, knowing the sparsifying basis is not
necessary; it is possible to estimate the basis and the sparse
coefficient simultaneously. Since the sparsifying basis is unknown;
hence the name 'Blind'. It was shown in [9] that BCS can be used for
dynamic MRI reconstruction.

The BCS technique do not explicitly incorporate the fact that the
MRI sequence is low-rank; as mentioned before, exploiting this
property had shown better reconstruction previously [5–7]. In this
work, we propose to incorporate the low-rank property in order to
improve the BCS recovery results.

The rest of the work is organized into several sections. Previous
work in dynamic MRI reconstruction will be briefly discussed in the
following section. Our proposed methodology is described in
Section 3. The experimental results will be in Section 4. Finally, the
conclusions of this work will be discussed in Section 5.
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2. Review of literature

The most general representation for the dynamic MRI recon-
struction problem is expressed in (2). Compressed sensing (CS)
based techniques exploit the spatio-temporal redundancy of the
sequence for reconstruction. It is well known that MR images
(columns of X) are sparse in wavelet domain. Since the sequence is
temporally correlated, the variation along the rows of X can be
assumed to be smooth and hence is likely to have a compact
representation in the Fourier domain. In [1,2] the following
formulation was proposed for recovering the sequence:

min
X

vec Yð Þ−Φvec Xð Þk k22 þ λ W⊗F1Dvec Xð Þk k1 ð3Þ

Here the W is the wavelet transform to sparsify along the spatial
direction, and F1D is the one dimensional Fourier transform to
sparsity along the temporal direction. The Kronecker product is a
convenient notation for this expression.

In [3] it was shown that one can also recover the sequence by only
accounting for the temporal difference as follows:

min
X

vec Yð Þ−Φvec Xð Þk k22 þ λTVt Xð Þ ð4Þ

where TVt = ∑ ‖∇tXt‖1 and∇t denotes the temporal differentiation
for the ith pixel.

Here the argument is that since the frames are temporally
correlated, the difference between the frames is sparse, and this
sparsity can be exploited for recovery.

Departing from CS based techniques, it was shown by [4] that, the
matrix X can also be represented as a low-rankmatrix. The argument
is simple—since the frames are correlated, the columns of X are not
linearly independent. In [4] a matrix factorization based technique
was used for solving the recovery problem; however other
techniques like nuclear norm minimization can be used as well.

More recent studies [5–7] proposed combining CS with low-rank
matrix recovery. The following optimization problem is used for
reconstructing X:

min
X

vec Yð Þ−Φvec Xð Þk k22 þ λ1 ΨS⊗ΨTvec Xð Þk k1 þ λ2 Xk k� ð5Þ

Here ΨS andΨT are transformed to sparsify along the spatial and
temporal directions. In [5] these are respectively spatial and
temporal finite differencing; in [6,7] they are wavelet and Fourier.
The nuclear norm penalty (‖X‖⁎) enforces a low-rank solution. The
two parameters—λ1 and λ2—balances the relative importance of the
sparsity and the low-rank penalties.

So far, we have been discussing techniques where the sparsifying
transform (wavelet, Fourier, finite differencing etc.) is known. A
recent work [8] showed that instead of using fixed sparsifying basis,
better results can be obtained if a learned basis was employed. Here
dictionary learning techniques were employed to estimate the
sparsifying dictionary from the training data. The learned dictionary
was finally used for actual dynamic MRI reconstruction. They
showed that, such a learned dictionary based reconstruction yields
considerably better results than previous CS based recoverymethods
that used fixed sparsifyng basis.

It should be noted that the priorwork [8] had two phases: training—
where the dictionary is estimated/learned; and testing—where the
learned dictionary is employed for dynamic MRI reconstruction. The
blind compressed sensing (BCS) [9] formulationmarries the twophases
—in BCS, both the empirical sparsifying dictionary and the sparse
coefficients are estimated simultaneously during signal recovery.

In BCS, the signal is assumed to be sparse in an unknown basis, i.e.
X = DZwhere D is the sparsifying basis and Z is the sparse coefficient

set. The BCS formulation for dynamic MRI [10] is as follows:

min
D;Z

vec Yð Þ−Φvec DZð Þk k22 þ λ1 Zk k1 þ λ2 Dk k2F ð6Þ

Obviously this is not a convex problem since the unknowns D
and Z are in a product form (a bilinear problem). However, it has
been shown in [10] that this technique yields better results than
low-rank recovery techniques [4]. However, it is known that simple
low-rank recovery techniques do not yield the best reconstruction
results. Thus an improvement over such a technique do not mean
much; one does not know if BCS can compete with state-of-the-art
techniques which combine sparsity with rank deficiency, e.g. k-t
SLR [5].

The BCS technique we discussed [9,10] are examples of sparse
synthesis prior. A co-sparse analysis prior BCS can also be
formulated [11]. The difference between synthesis and analysis
prior is that the later assumes DX to be co-sparse; D being the
dictionary and X being the signal of interest. The analysis prior BCS
was not used for MRI reconstruction; it was used for image
denoising. If this technique is adopted for dynamic MRI recovery,
the optimization problem would be,

min
D;X

vec Yð Þ−Φvec Xð Þk k22 þ λ1 DXk k1 þ λ2 Dk k2F ð7Þ

In CS based MRI reconstruction, it has been observed repeatedly
that the analysis prior yields better recovery results compared to the
synthesis prior [12,13]. We expect that similar improvements can be
achieved for BCS as well.

3. Exploiting rank-deficiency in BCS

As mentioned before, the analysis prior BCS have not been
applied for dynamic MRI reconstruction. Hence it would be
interesting to see how it performs. However, this may not be a
significant improvement. What is even more interesting is to follow
cue from prior studies [5–7] that combined rank-deficiency with
sparsity based techniques. In this work, we propose to exploit the
low-rank property of the MRI sequence X within the BCS
reconstruction framework. This can be achieved by adding low-
rank penalties to (6) and (7), leading to:

min
D;Z

vec Yð Þ−Φvec DZð Þk k22 þ λ1 Zk k1 þ λ2 Zk k� þ λ3 Dk k2F ð8Þ

min
D;X

vec Yð Þ−Φvec Xð Þk k22 þ λ1 DXk k1 þ λ2 Xk k� þ λ3 Dk k2F ð9Þ

The low-rank penalty on the signal X is obvious for the co-sparse
analysis prior formulation (9); since the MRI sequence is low-rank,
we impose the penalty on X. For the synthesis prior (8), one might
ask, why the low-rank penalty is imposed on Z. This too is simply to
explain—BCS minimizes the Frobenius norm of the dictionary, hence
D cannot be of low-rank; the only possibility is to impose a low-rank
penalty on Z.

These formulations (8) and (9) are not convex, but then none of
the BCS formulations are. Moreover, there are no algorithms to solve
(8) and (9), because such problems have not been encountered
before. In the following sub-section, we propose to derive efficient
algorithms to solve these in the following section.

The reviewer pointed out that usually dynamic MRI sequences
are acquired by multi-coil scanners. It is easy to incorporate the
SENSE framework [14] into our proposed formulation. In SENSE, the
data acquisition from each channel (c) is expressed as:

yc ¼ RFScxþ η ð10Þ
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