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Recently compressed sensing (CS) has been applied to under-sampling MR image reconstruction for
significantly reducing signal acquisition time. To guarantee the accuracy and efficiency of the CS-based MR
image reconstruction, it necessitates determining several regularization and algorithm-introduced
parameters properly in practical implementations. The regularization parameter is used to control the
trade-off between the sparsity of MR image and the fidelity measures of k-space data, and thus has an
important effect on the reconstructed image quality. The algorithm-introduced parameters determine the
global convergence rate of the algorithm itself. These parameters make CS-based MR image reconstruction
a more difficult scheme than traditional Fourier-based method while implemented on a clinical MR
scanner. In this paper, we propose a new approach that reveals that the regularization parameter can be
taken as a threshold in a fixed-point iterative shrinkage/thresholding algorithm (FPIST) and chosen by
employing minimax threshold selection method. No extra parameter is introduced by FPIST. The
simulation results on synthetic and real complex-valued MRI data show that the proposed method can
adaptively choose the regularization parameter and effectively achieve high reconstruction quality. The
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proposed method should prove very useful for practical CS-based MRI applications.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, compressed sensing (CS) has attracted much
attention in many areas, especially in signal processing, by offering
the possibility of accurately recovering a sparse or compressible
signal from fewer measurements than that suggested by the
conventional Nyquist sampling theory [1-3]. Due to the implicit
sparsity of MR images and the data acquisition mode of MRI meet the
requirements of CS theory [4-7], CS-based MR image reconstruction
has the potential to reduce scan time considerably while keeping the
images of high quality.

Applying CS to MR image reconstruction from under-sampled k-
space data, one seeks to solve the following ~{-norm minimization
problem [4]:

; 2
min || Fz—ylz + AYX];, (1)

where x is the reconstructed image, y is the measured k-space data
acquired by an MR scanner, n is the number of pixels of x and A is the
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regularization parameter. F, and ¥ denote the under-sampling
Fourier transform and the sparsifying transform respectively. There
are several algorithms that have been proposed in the literature to
find the optimal solution for the minimization problem (1), such as
non-linear conjugate gradient algorithm (NLCG) [4], two-step
iterative shrinkage/thresholding algorithm (TwIST) [8], and fast
iterative shrinkage/thresholding algorithm (FISTA) [9], etc. In order
to implement these algorithms for CS-based MR image reconstruc-
tion, several parameters should be determined properly in advance.
One of them is the regularization parameter A, which controls the
trade-off between the data fidelity of the reconstruction to the
measurements and the sparsity of MR images [4]. Proper selection of
A is important in guaranteeing the reconstructed image quality.
Others are imposed by the algorithms themselves, such as the
parameter L in FISTA which plays the role of a step size related to the
convergence rate and should be larger than an unknown Lipschitz
constant. These parameters make it much difficult to implement
reliable and fast CS-based MR image reconstruction on clinical
MR scanners.

There are two ways to determine the value of A. One is to solve
(1) with different values of A and select the one which satisfies
[IF.x — yll = e, where e controls the upper bound of the recovery
error [4]. Unfortunately, e is usually unknown previously. The other
is to extend existing parameter choice methods [10], proposed for
Tikhonov regularization problems, to (1) for finding out the optimal
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Fig. 1. Data distribution in the highest sub-band HH of wavelet transform of 80% under-sampled MR image: (a) MR image reconstructed from fully sampled data by inverse
FFT; (b) 2D radial under-sampling scheme; (c) MR image reconstructed from 80% under-sampled data by zero-padded inverse FFT; (d) wavelet transform of under-sampled
MR image, the ROI region contains the pixels of highest-frequency sub-band; (e) probability density distribution of real parts of pixels in highest-frequency sub-band; (f)
probability density distribution of imaginary parts of pixels in highest-frequency sub-band; (g) probability density distribution of absolute values of pixels in highest-

frequency sub-band.

value of the regularization parameter as suggested in Ref. [3].
However, most popular parameter choice approaches used in
practical problems, such as Generalized Cross-Validation (GCV)
[11] and L-curve (LC) [12], need to solve the target regularization
problem many times to find the best regularization parameter that
meets their criteria. In CS-based MR image reconstruction, almost all
existing algorithms for solving (1) employ iterative
schemes [4,5,8,9,13,14], which make slow processes to find the
final solution. Thus it will be very numerically costly while employ-
ing these parameter choice methods to determine the regularization
parameter in (1). Algorithm-introduced parameters are usually
estimated empirically in advance. So the decision of the proper
selection of these parameters is very important for practical CS-
based MRI applications.

In this paper, we present a fixed-point iterative shrinkage/
thresholding algorithm (FPIST) to solve the optimization problem
(1) for under-sampling MR image reconstruction. No extra param-
eters are introduced in FPIST. Based on this algorithm, the
regularization parameter A is regarded as a threshold and chosen
by estimating background noise level in wavelet domain. We
evaluate the performance of the proposed method by simulations
based on synthetic complex-valued data.

The remaining parts of this article are organized as follows:
Section 2 describes the proposed algorithm with adaptive regular-
ization parameter selection method in details, and gives the
framework of the proposed approach. Section 3 shows the
simulation results from a numerical phantom and in vivo MRI data,
and followed by the study conclusion in Section 4.

2. Methods
2.1. Fixed-point iterative shrinkage/thresholding algorithm

Take the orthogonal wavelets as the sparsifying transform W,
and define

2= WX, (2)

F=F, + Fg, 3)
— -1

R(uz) =F (uﬂ)lp ’ (4)

where the subscript u indicates that the under-sampling operation is

applied, while the subscript u denotes its complementary operation. Fis

the normalized full-sampling Fourier transform. Rewrite (1) as follows:
. 2

min ||k, z—yll; + Al 2[|;- ©)

2=

cn

Since that R, = R— Ry and y is the under-sampled k-space data,
we obtain

. 2 2
min || Rz—y3— | R2l3 + ]2l (6)

The unique minimizer of (6) satisfies

RHRz—RHy—RgRﬂz-i-%ly(z) =0, (7)
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