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Functional magnetic resonance imaging (fMRI) technique with blood oxygenation level dependent (BOLD)
contrast is a powerful tool for noninvasive mapping of brain function under task and resting states. The
removal of cardiac- and respiration-induced physiological noise in fMRI data has been a significant
challenge as fMRI studies seek to achieve higher spatial resolutions and characterize more subtle neuronal
changes. The low temporal sampling rate of most multi-slice fMRI experiments often causes aliasing of
physiological noise into the frequency range of BOLD activation signal. In addition, changes of heartbeat
and respiration patterns also generate physiological fluctuations that have similar frequencies with BOLD
activation. Most existing physiological noise-removal methods either place restrictive limitations on image
acquisition or utilize filtering or regression based post-processing algorithms, which cannot distinguish the
frequency-overlapping BOLD activation and the physiological noise. In this work, we address the challenge
of physiological noise removal via the kernel machine technique, where a nonlinear kernel machine
technique, kernel principal component analysis, is used with a specifically identified kernel function to
differentiate BOLD signal from the physiological noise of the frequency. The proposed method was
evaluated in human fMRI data acquired from multiple task-related and resting state fMRI experiments. A
comparison study was also performed with an existing adaptive filtering method. The results indicate that
the proposed method can effectively identify and reduce the physiological noise in fMRI data. The
comparison study shows that the proposed method can provide comparable or better noise removal
performance than the adaptive filtering approach.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Advances in blood oxygenation level dependent (BOLD) functional
magnetic resonance imaging (fMRI) are typically characterized by
improved spatial resolution and detection of more subtle neuronal
activity.However, BOLD contrast resulting from functional activation is
usually small, so the advancements can depend heavily upon the
signal-to-noise ratio (SNR). SNR is commonly improved by increasing
themagneticfield strength [1–4], but cardiac- and respiration-induced
physiological noise also increases with the field strength. Thus an
increase in image SNR does not necessarily produce an equal
improvement in contrast-to-noise ratio (CNR), a quantitativemeasure
of imaging quality. Particularly, resting state studies of functional
networks [5–9], whichmeasure the baseline connectivity of functional
networks, are vulnerable to reductions in CNRbecause they lack a clear
stimulus paradigm to aid in detection and rely upon analysis of subtle,
correlated signal fluctuations between brain regions.

The primary challenge to physiological noise removal is that the
temporal sampling rates of most fMRI experiments are limited by the

repetition time (TR), a major component governing signal intensity
and image contrast, resulting in aliasing of physiological noise into
frequencies of the BOLD signal. Additionally, changes of heartbeat
and respiration patterns generate physiological fluctuations that
have similar frequencies with the BOLD signal. Furthermore,
physiological noise contaminates a wide range of frequencies
whose power spectrum reflects not a purely sinusoidal variation
but rather a distribution of frequencies about the peak, making them
difficult to characterize in frequency domain [10].

Currently, physiological noise removal is approached either
during acquisition, through gating and/or synchronization tech-
niques [11,12] or during post-processing. Post-processing methods
are desirable as they offer increased spatial and temporal specificity
and place fewer limits upon the experimental design. Several post-
processing approaches have been utilized previously, but each
suffers from limitations. Navigator echo methods lack the specificity
to localize the source of motion [13], which may lead to incomplete
correction or introduce new artifacts. Retrospective correction
methods [14,15], which fit a low-order Fourier series to fMRI data
in either k-space or image domain based on the phase of respiration
or cardiac cycle during each acquisition, have been shown to be
effective [14,15]. However, these methods cannot remove the noise
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induced by changes in breathing pattern [7,8]. Other retrospective
methods either require a short TR [16] or are limited to global
fluctuations [17]. More importantly, none of these methods,
including digital filtering and wavelet-based methods [18–20], can
distinguish frequency components of the physiological noise that
overlapwith the BOLD activation. If the signal and noise occupy same
frequency bands, then the removal of noise will also result in the
attenuation of signal [21,22]. Efforts to increase the resolution and
scope of BOLD-contrast fMRI, particularly in the area of character-
izing resting-state functional networks, would therefore benefit
greatly from new techniques better suited to separating the aliased
physiological noise from the BOLD signal.

Another type of techniques, such as principal component analysis
(PCA) and independent component analysis (ICA), represent a
fundamentally different approach to the noise removal problem.
These techniques decompose fMRI data into multiple components,
and feature projections on these components share same frequency
bands but could be originated from different signal and noise sources
[10,23–26]. Since these feature projections are not implemented in
the frequency domain, they are potentially capable of distinguishing
frequency-overlapping signal and noise. In this work, we report a
new fMRI physiological noise removal procedure based on the kernel
principle component analysis (KPCA) [27]. KPCA is a nonlinear
extension of principal component analysis (PCA) and has been used
in fMRI data analysis [28–31]. Nonlinear PCA can characterize high
order dependence among multiple voxels, and can provide more
complete characterization of fMRI data structure than linear PCA
[32,33]. KPCA provides a controllable signal-noise differentiation
analysis via a kernel and its parameter. While KPCA has been
successfully used to remove Gaussian noise by excluding the least
significant components from reconstruction [34], the same approach
is not directly applicable to the removal of physiological noise that is
usually characterized by both the most and least significant
components. Therefore, we further develop a KPCA-based method
for physiological noise removal. This method aims to differentiate
and attenuate the aliased physiological noise that could overlap with
the BOLD signal. The method was compared to an adaptive filtering
method [35], which is an improved version of the RETROICOR
method [15], for task-related and resting state fMRI data. The results
indicate that the proposed method can provide comparable or better
noise removal performance than the adaptive filtering method,
implying promising applications in fMRI studies.

2. Material and methods

2.1. Data acquisition

Both task and resting state fMRI data were used in this study.
Task-related data were obtained from three different experiments.
The first experiment was performed using a 3 Tesla GE system with
an 8-channel coil at Duke University Medical Center. Four data sets
were acquired from a healthy adult on a same day using T2*-
weighted parallel echo planar imaging (EPI) with an acceleration
factor of 2, while the subject was performing a right-hand finger-
tapping motor task with a blocked-design paradigm, which
consisted of four 25 sec task blocks and five 25 sec off blocks.
There was a 15 sec dummy scan at the beginning of each run, which
was removed before the analysis. EPI parameters included a TR of
2 sec, an echo time (TE) of 30 msec, and a flip angle of 90°. 30 axial-
slices were collected for each volume with 4 mm slice thickness and
1 mm gap, FOV was 24 cm × 24 cm, and image matrix size is
120 × 120 after the sensitivity encoding reconstruction, correspond-
ing to an in-plane resolution of 2 × 2 mm2. The second experiment
was performed using the same scanner used in the first experiment.
Two fMRI data sets were collected from two subjects using a T2*-

weighted EPI sequence with SENSE acceleration factor of 2 while the
subjects were performing the right-hand finger-tapping motor task
with a blocked-design paradigm, which consisted of five 30 sec task
blocks and five 30 sec off blocks. The scan time for each run was
5 min. TR = 2 sec, TE = 25 msec. 35 axial-slices were collected in
each volume with 3 mm slice thickness. FOV was 24 cm × 24 cm,
and image matrix size is 64 × 64. Another three sets of task fMRI
data are from the website of New York University Center for Brain
Imaging (cbi.nyu.edu). The data were acquired from a subject using a
3 T Siemens Allegra scanner. The first two sets were collected using a
single channel head coil, and another set was collected using a
surface coil. Imaging parameters include a TR of 1.5 sec, a TE of
30 msec, and a flip angle of 75°. A visual stimulation was applied to
the subject by alternatively showing a left and right circular
hemifield stimulus of alternating checks at full contrast. In each set
150 volumes were acquiredwith 25 axial-slices in each volume. Each
slice is represented by 64 × 80 3 mm isotropic voxels.

Three resting state fMRI experiments were implemented at Duke
University Medical Center. In the first experiment, four data sets
were collected from a subject using the same T2*-weighted parallel
EPI sequence as that used in the first task related experiment while
the subject was instructed to look at a crosshair. The scan time for
each run was 4 min. Inversion-recovery (IR) prepared spin-echo EPI
was also acquired to provide an anatomic reference with identical
voxel geometry and geometric distortions as in fMRI. IR-EPI scan
parameters included TR = 5 sec, TE = 24 msec, IR time = 1 sec,
flip angle = 90°, slice thickness = 4 mm (with 1 mm gap), FOV =
24 cm × 24 cm, in-plane matrix size = 120 × 120 (with 2 seg-
ments), and 30 axial slices. In the second experiments, six sets of
resting state fMRI data were collected from six healthy adults on
different days. The imaging parameters are TR = 4 sec, TE =
35 msec. flip angle =90°, FOV = 24 cm × 24 cm, the image matrix
size is 140 × 140. 56 axial slices were acquired in each volumewith a
3 mm slice thickness, and 74 volumeswere collected in each data set
(about 5 minutes time duration). In the third experiment, two data
sets were collected from two subjects using a T2*-weighted EPI
sequencewith SENSE acceleration factor of 2 while the subjects were
instructed to look at a crosshair. The scan time for each run was
5 min. TR = 2 sec, TE = 25 msec. 35 axial-slices were collected in
each volume with a 3 mm slice thickness. FOV was 24 cm × 24 cm,
and image matrix size is 64 × 64.

The cardiac and respiration cycles were simultaneously recorded
using Biopac MRI-compatible transducers at a sampling rate of
100 Hz during the fMRI data acquisition. The cardiac cycles were
measured by a fiber-optic finger pulse-oximeter cuff. The respiration
data were collected by a stretch transducer on an elastic belly belt
placed around the abdomen. All electrical connections are grounded
and pass through MRI filters in the magnet room shield. Cardiac
signals were amplified outside the magnet room using Biopac
amplifiers. All acquired physiological signals are connected to an
analog/digital data acquisition device (Measurement Computing
Inc.) connected to the computer via a USB interface. The acquired
physiological data were down-sampled and synchronized to the
slice-acquisition timing of fMRI. The physiological data from New
York University Center for Brain Imaging were obtained from their
website (cbi.nyu.edu). The experiments on human subjects were
compliant with the standards established by the Institutional Review
Boards of Duke University.

2.2. Data analysis

A block diagram of the proposed method is shown in Fig. 1. fMRI
data is first motion corrected and spatially smoothed. The pre-
processed fMRI data is decomposed into multiple principal compo-
nents (PC) using KPCA. The feature projections on PCs characterizing
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