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Abstract

Diffusion tensor imaging (DTI) constitutes the most used paradigm among the diffusion-weighted magnetic resonance imaging (DW-
MRI) techniques due to its simplicity and application potential. Recently, real-time estimation in DW-MRI has deserved special attention,
with several proposals aiming at the estimation of meaningful diffusion parameters during the repetition time of the acquisition sequence.
Specifically focusing on DTI, the underlying model of the noise present in the acquired data is not taken into account, leading to a suboptimal
estimation of the diffusion tensor. In this paper, we propose an optimal real-time estimation framework for DTI reconstruction in single-
coil acquisitions. By including an online estimation of the time-changing noise variance associated to the acquisition process, the
proposed method achieves the sequential best linear unbiased estimator. Results on both synthetic and real data show that our method
outperforms those so far proposed, reaching the best performance of the existing proposals by processing a substantially lower number of

diffusion images.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

Magnetic resonance imaging (MRI) allows for easily
identifying the anatomical structures of the brain in vivo.
However, with this modality, the white matter appears as a
homogeneous region, which hides the complex microarch-
itecture and connectivity of the nervous fibers comprised in
this tissue. Diffusion-weighted MRI (DW-MRI) is intended
to overcome this drawback, taking advantage of the diffusion
of water molecules along the myelinated fiber bundles in the
white matter.

The three-dimensional diffusion probability displacement
function (PDF) or diffusion propagator of water molecules
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can be inferred from DW-MRI by acquiring a number of
diffusion-sensitized images along different orientations of
the sampling space. DW-MRI leads to diffusion-direction-
dependent image intensities. In the case of anisotropic water
diffusion, these intensities will be low if the measurement
gradient direction is aligned with the major direction of
diffusion and high for diffusion directions orthogonal to the
measurement gradient direction.

The number of required diffusion-weighted images
(DWIs) depends on how the diffusion is modeled. The
well-known diffusion tensor (DT) model assumes a Gaussian
PDF and requires at least six DWIs plus an additional
unweighted image. Since the physics of the problem impose
the radial symmetry of the diffusion, the entire process can
be described in terms of the 3x3 covariance matrix of a
Gaussian random variable. As such, the covariance matrix is
positive, definite and symmetric, so it has only six degrees of
freedom. This matrix is the diffusion tensor, and those
techniques oriented to compute and represent it (or
parameters derived from it) at each location of a three-
dimensional volume are gathered under the denomination of
DT (magnetic resonance) imaging (DT-MRI or DTI). Due to
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the six degrees of freedom of the DT, it may be determined
from six independent gradient directions (thus, the need for
six DWIs [1]). Nevertheless, it is very common to acquire a
higher number of directions (DWIs) to improve the
robustness of the estimation [2].

A number of techniques have been recently developed in
order to overcome the limitations of the DT model. These
limitations are imposed by the Gaussian assumption, which
cannot properly model fiber bundle crossing (diffusion in
two or more principal directions). The group of methods
known as high angular resolution diffusion imaging
(HARDI) goes beyond these limitations and ranges from
more or less immediate extensions of the DT model to
multitensor models [3—5], continuous distributions of
tensors based on deconvolution approaches [6—10] or
generalized tensor models [11], to even more general,
nonparametric techniques [12,13] like the popular Q-ball
[14,15] or the recent improvements including solid-angle
considerations [16—18]. Recently, multishell approaches
[18-20] have allowed to overcome some of the limitations
of HARDI techniques at the expense of acquiring far more
diffusion directions.

Robust estimation in DTI usually requires long acquisi-
tion times due to the increase in the number of DWIs needed.
Acquisitions may be even longer for HARDI or multishell
techniques [21,22]. This can be problematic when there is an
excessive motion of the patient undergoing the scan (a
frequent situation for neurological patients or children who
cannot be sedated). Severe motion during the scan can force
it to be aborted or render the acquired DWIs useless. Thus,
one would like to make only as few acquisitions as possible.
An estimation framework providing real-time estimates as
new DWIs are available would allow online checking of the
quality of the estimations. This would deliver immediate
feedback to help the practitioner decide whether the
acquisition is sufficiently acceptable to stop the procedure.

Poupon et al. [21,22] proposed an interesting approach
based on the Kalman filter for real-time estimation of the
DT and the orientation distribution function (ODF)
obtained from Q-ball imaging. The DT model, provided
that certain signal-to-noise ratio (SNR) conditions are met
and no positivity constraints exist, is linear and easily fits
into the Kalman filtering framework. As for the recon-
struction of the ODF following [23], Deriche et al. [24]
demonstrated that the approach in Refs. [21,22] was
suboptimal and proposed a regularized Kalman filter that
nicely addressed this issue. Brion et al. [25,26] recently
proposed an improved version of the filters in Refs.
[21,22,24]. In their work, the acquired DWIs are
previously denoised in real time by means of the signal
estimator proposed in Ref. [27]. This way, the Kalman
filter benefits from the higher SNR of the observed data,
yielding a performance improvement for both DT and
ODF estimation.

The authors of Refs. [21,22], however, focus on the real-
time aspect of the general algorithm, and thus, they do not

elaborate on the specific noise statistics of the DT model. In
their estimator, the same variance is considered for each
logarithmic DWI signal (log-DWTI hereafter), and this turns
out not to be true [2,28]. With this constant variance
assumption, the estimator proposed in Refs. [21,22] behaves
as a sequential ordinary least squares (OLS) algorithm,
which is suboptimal for this application. The method in Refs.
[25,26] also behaves as a sequential OLS since it considers
that the noise variance after signal restoration is the same for
all the restored log-DWIs. If this assumption is not valid
before signal denoising, it will remain the same for the
restored data. Thus, the OLS is also suboptimal in this case.

The batch (offline) OLS estimator can be shown to be the
best linear unbiased estimator (BLUE) for the linear model
provided that the underlying noise is uncorrelated (with the
same variance for each log-DWI) and has zero mean [29].
For single-coil acquisitions, where the signal can be modeled
as Rician [30], the noise in each gradient image is assumed to
be independent, but the variance suffers nonnegligible
changes across log-DWIs. Salvador et al. [2] proposed an
improvement to DT estimation in single-coil acquisitions
based on LS. Since no constant variance can be assumed,
those measurements with higher noise variance are less
reliable. A strategy giving higher relevance (weight) to those
samples with lower variance would be preferable instead.
Thus, the proposal in Ref. [2] was based on the weighted
least squares (WLS) estimator, which is in fact the BLUE
under these conditions .

It can be demonstrated that the optimal weights for the
WLS estimator are the inverses of the noise variances
associated to each log-DWI measurement, so a formal noise
characterization of the linearized DT model is necessary. In
Ref. [2], this problem was solved by assuming that the
variance of the logarithmic observations in the Rician model
is inversely proportional to the squared amplitude of the
corresponding DWI signal. Though the authors only
provided empirical evidence, it is an excellent approach
which has been analytically solved in Ref. [28]. When the
data have been previously denoised, the noise characteriza-
tion depends on the specific filter employed for restoration,
although, in most practical cases, the dependence with the
DWI amplitudes remains the same.

In this paper, we address the problem of optimal real-time
estimation in single-coil DT-MRI acquisitions. A strategy
based on real-time signal restoration is proposed to
incorporate time-varying noise information to the online
estimation process. Based on this strategy, we propose a
sequential WLS estimation framework which can be used
with either directly measured data or the real-time restored
data as inputs, achieving the BLUE in both contexts. A
comparative analysis over both synthetic and real data shows

' In the case of simultaneous acquisition and parallel reconstruction
schemes (pMRI), the noise is no longer Rician [31-33], and the bias in
WLS estimation is relevant as shown in Ref. [28]. Thus, although the WLS
is still applicable, it is not the BLUE for pMRI schemes.
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