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In this work, a computational model of magnetic resonance (MR) flow imaging is proposed. The first model
component providesfluid dynamicsmaps by applying the lattice Boltzmannmethod. The secondone uses the
flowmaps and couplesMR imaging (MRI)modelingwith a newmagnetization transport algorithm based on
the Eulerian coordinate approach. MRI modeling is based on the discrete time solution of the Bloch equation
by analytical local magnetization transformations (exponential scaling and rotations).
Model is validated by comparison of experimental and simulated MR images in two three-dimensional
geometries (straight and U-bend tubes) with steady flow under comparable conditions. Two-dimensional
geometries, presented in literature,were also tested. In both cases, a good agreement is observed. Quantitative
analysis shows in detail the model accuracy. Computational time is noticeably lower to prior works.
These results demonstrate that the discrete time solution of Bloch equation coupled with the new
magnetization transport algorithm naturally incorporates flow influence in MRI modeling. As a result, in the
proposedmodel, no additional mechanism (unlike in prior works) is needed to consider flow artifacts, which
implies its easy extensibility. In combination with its low computational complexity and efficient
implementation, the model could have a potential application in study of flow disturbances (in MRI) in
various conditions and in different geometries.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Magnetic resonance (MR) images of vascular structures play a
very important role in clinical angiography [1]. Many diseases are
directly related to changes in vessel structures, and a lot of these
modifications can appear in medical images. Signal intensity
enhancements may indicate hypervascularized areas of tumoral
lesions (e.g., hepatocellular carcinoma) [2]. In contrast, flow-related
signal voids can appear in the place of serious vessel shape
perturbations (e.g., aneurysm, stenosis) [3,4]. Hence, the ability to
understand MR flow images and to predict consequences of changes
in vascular geometries is crucial.

Although MR imaging (MRI) is known as a highly detailed three-
dimensional (3D) imaging modality, there are still a lot of difficulties
in vascular image interpretation. This is mainly due to flow-induced
disturbances appearing in such areas, caused by intravoxel phase

dispersion (IVPD) [5], misregistration [6,7] or inflow/outflow effects
[8]. Moreover, imperfections and limitations of hardware continue to
reduce the effectiveness and accuracy of fluid motion characteriza-
tion and visualization. This motivates the creation of computational
models of MR flow imaging as a tool to enhance understanding of
involved processes. For instance, they can help to study the
relationship between vascular geometry changes and hemodynamic
factors in silico [9]. The connection between fluid flow and image
appearance can also be investigated [4]. Turning on/off particular
physical phenomena and evaluation of various combinations of MRI
equipment parameters are often time consuming or even impossible.
On the other hand, in computational models, it is far easier to switch
on/off their components and to study contribution of each factor
alone or together. Therefore, such modeling can certainly contribute
to increase our understanding of pathological processes and to
improve MRI sequence design. Finally, controlled simulation
experiments are also a valuable way of education [10].

There were many studies on flow influence on MRI, both
experimental and by simulations, e.g., [4–9,11–20]. Most of them
are focused on a chosen imaging sequence/technique and chosen
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geometry and flow pattern, e.g., on balanced steady-state free
precession (b-SSFP) in simple geometry [8], spiral imaging [7], phase
contrast imaging in a carotid bifurcation [19] or slice selection
process [11,17]. In contrast to them, in this paper, we propose amore
general approach in computational modeling of MR flow imaging
with a computer program allowing fast simulations of the effect of
complex flow geometries in arbitrary imaging procedure. Our goal is
not to concentrate on one particular geometry but to provide
extensible solution that integrates geometry, flow and MRI manag-
ing modules to increase understanding and unravel their interac-
tions by efficient tests of many scenarios (parameters).

The proposed computational model consists of two connected
components: a fluid dynamics component and an MRI one. The first
one is responsible for flowmodeling by the lattice Boltzmannmethod
(LBM) [21] in given geometries. It provides flowmaps which are then
used in the second component of the model. This second component
reproduces the MRI process. During the imaging simulation, a newly
proposedmagnetization transport algorithm is used tomodel the flow
influence. The algorithm is basedon the Eulerian coordinates approach
(i.e., stationary frame [22]). MRI processes aremodeledwith the use of
the discrete time solution of the Bloch equation [23] bymeans of local
magnetization rotations and exponential scaling [24]. These analytical
magnetization transformations closely follow the physical process of
MRI and in combination with the magnetization transport algorithm
naturally incorporate flow-related artifacts. As a result, no additional
mechanism is needed to consider the flow influence during most MRI
processes (including excitation, relaxation, precession aswell as space
encoding and signal sampling in 3D objects), in contrast to the one of
themost advanced prior works [4,19]. This also implies that thewhole
imaging procedure for various sequences (e.g., spoiled gradient echo
orb-SSFP)withdifferent viewordering (e.g., linear, centric or cyclic) or
with different k-space trajectory (e.g., radial or spiral) is straightfor-
ward to model, unlike in previous studies [7,8]. Another advantage of
the proposed solution is its implementation (computer program) that
allows to easily control modeling parameters starting from geometry
specification, through flow and MRI, and ending on image processing.
These features render the solution as a tool that is user friendly and
manageable at different levels, which facilitates running series of
simulations with different physiological and imaging parameters. In
this study, as afirst step,we focus onmagnitude images acquired in the
spoiled gradient echo sequence. Our initial efforts to create the
presented solution are described in the conference paper [25].

In the second section of the paper, the proposed computational
model and its implementation (integrated simulation environment)
are described. Simulation and experimental setups, used in model
validation, are also presented. In the Results section, the validation of
the model is performed by comparison between experimental and
simulated images as well as by quantitative analysis. The computa-
tional performance is also investigated. Finally, in the Discussion
section, the model is confronted with prior works, its limitations and
advantages are described, and also future works are sketched.

2. Methods

At the beginning, the two parts of the model are described. Then,
the way of flow influence incorporation in MRI modeling is
presented. Next, the integrated simulation environment (computer
program implementing the model with additional supporting
modules) is briefly described. Finally, the simulation and experiment
setups, used to validate the model, are presented.

2.1. Fluid flow modeling

In the proposed solution, LBM [21] is applied to model fluid flow.
This method has been intensely developed over the last two decades,

becoming a powerful alternative to the numerical solving of Navier–
Stokes equations known as the conventional computational fluid
dynamics mechanism [26]. Many theoretical analysis [27] and
numerical investigations [28,29] have shown that LBM is commonly
recognized as a method able to simulate realistic fluid flows obeying
the Navier–Stokes equations with high accuracy.

LBM is a mesoscopic method placed in between microscopic
molecular dynamics and continuous macroscopic approaches [30]. It
doesnot consider eachelementaryparticlealonebut treats thebehavior
of a collection of particles as a unitwhose properties are represented by
a particles distribution function. Therefore, LBM preserves most of the
advantages of both micro- and macroscopic approaches. Its clear
physical insight into molecular processes provides easy treatment of
boundary conditions and, consequently, high applicability for complex
geometries [31]. At the same time, the relevant quantities (e.g., mass,
energy, etc.) are conserved at the macrocontinuous regime, like in the
Navier–Stokes equations. Moreover, it shows numerous computational
advantages, e.g., good stability properties or simple arithmetic
calculations. Finally, owing to the intrinsic space–time locality of LBM
(i.e., in each time step, only data from neighboring lattice nodes are
needed), it is ideal for parallel computing [32].

In LBM, fluids consist of a set of discrete nodes creating regular
lattices. At each lattice node, the virtual particles (represented by their
distribution function) reside. At discrete timemoments, these particles
can move along specified directions to the neighboring nodes
(propagation step). When the particles meet, they collide (collision
step),buttheyalwaysstayonthelatticenodes.Thecollisionrulesareset
according to the conservation laws of mass (i.e., number of particles),
momentum and energy. The exact conservation laws are fulfilled, not
only their numerical approximations. These two steps are expressed
by amathematical formula known as the lattice Boltzmann equation:

f i rþ eiΔt; t þ Δtð Þ−f i r; tð Þ ¼ Ω r; tð Þ; ð1Þ

where fi(r, t) is the particle distribution function in the grid node
located at position r at the time t and streaming in the next time step
Δt in the direction i with the velocity ei. Ω is the collision operator
standing for collision rules of the simulated physical phenomenon.

Using the Bhatnager–Gross–Krook (BGK) model [33], the collision
operator (complex integro-differential expression) is simplified by the
widely used, single-time relaxation approximation [31]:

Ωi r; tð Þ ¼ 1=τ f
eq
i r; tð Þ−f i r; tð Þ� �

; ð2Þ

where τ is the dimensionless relaxation time related to fluid viscosity.
The local equilibrium distribution function fi

eq is given by [34]:

f
eq
i ¼ ρωi 1þ 3

c2
ei⋅uþ 9

2c4
ei⋅uð Þ2− 3

2c2
u⋅u

� �
; ð3Þ

where u ¼ 1
ρ

Xn−1

i¼0

ei f i is the macroscopic lattice velocity, ρ ¼
Xn−1

i¼0

f i is

the dimensionless lattice density, ωi is the weighting factor of a
lattice topology and c is the lattice constant related to a propagation
factor on the lattice and is set tounity inmost cases [34]. Latticevelocity
is a fraction of distance between neighboring nodes traveled by fluid
per time step (e.g., lattice velocity of 0.5means that thefluidmoves 0.5
lattice cell in time stepΔt). To obtain thephysicalmacroscopic velocity,
the lattice velocity is multiplied by Δd/Δt, where Δd is the lattice cell
size (distance between neighboring lattice nodes).

In two-dimensional (2D) fluid flows, we use themodel with n=9
discrete velocities (D2Q9) (Fig. 1A) where

e0 ¼ 0;0½ �c ω0 ¼ 4=9
e1;2; e3;4 ¼ �1;0½ �c; 0;�1½ �c ω1::4 ¼ 1=9

e5;…;8 ¼ �1;�1½ �c ω5::8 ¼ 1=36
;

1164 K. Jurczuk et al. / Magnetic Resonance Imaging 31 (2013) 1163–1173



Download English Version:

https://daneshyari.com/en/article/1806661

Download Persian Version:

https://daneshyari.com/article/1806661

Daneshyari.com

https://daneshyari.com/en/article/1806661
https://daneshyari.com/article/1806661
https://daneshyari.com

