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Abstract

This study proposes an expectation–maximization (EM)-based curve evolution algorithm for segmentation of magnetic resonance
brain images. In the proposed algorithm, the evolution curve is constrained not only by a shape-based statistical model but also by a
hidden variable model from image observation. The hidden variable model herein is defined by the local voxel labeling, which is
unknown and estimated by the expected likelihood function derived from the image data and prior anatomical knowledge. In the
M-step, the shapes of the structures are estimated jointly by encoding the hidden variable model and the statistical prior model obtained
from the training stage. In the E-step, the expected observation likelihood and the prior distribution of the hidden variables are
estimated. In experiments, the proposed automatic segmentation algorithm is applied to multiple gray nuclei structures such as caudate,
putamens and thalamus of three-dimensional magnetic resonance imaging in volunteers and patients. As for the robustness
and accuracy of the segmentation algorithm, the results of the proposed EM-joint shape-based algorithm outperformed those obtained
using the statistical shape model-based techniques in the same framework and a current state-of-the-art region competition level
set method.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Numerous automatic and semi-automatic magnetic reso-
nance (MR) brain image segmentation algorithms have been
introduced over the last two decades [1,2]. Generally, the
segmentation problem is defined as the estimation of the
observed intensity model of the original images. According
to the information level used to build various generative
models, MR brain image segmentation can be categorized
into two alternative groups. The first group is voxel-based
labeling, which utilizes intensity classification methods
aiming at assigning each voxel to a specific tissue type.

Voxel-wise approaches were used for segmenting MR brain
images into three common tissue types, that is, white matter,
gray matter and cerebra-spinal fluid. In these algorithms, one
can adopt the probability-based approaches based on the
either maximum a posteriori [3] or the maximum-likelihood
estimation [4,5]. Statistical atlas can also be used as the prior
information in the segmentation by combining with an image
registration algorithm [6–8]. In order to ensure spatial
smoothness, the Hidden Markov Random Field (HMRF)
was adopted to model the neighborhood relationship among
voxels [6,9,10]. Most recently, both the prior knowledge-
based and the HMRF modeling can be combined together
[10]. In brief, the advantage of voxel-wise segmentation is
that it is straightforward to apply local statistical methods to
model tissue intensity and spatial information. One draw-
back of such methods is that the statistical information is
voxel based or local, and they are venerable to noise, low
image contrast and diffused boundaries.
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The second group of segmentation methods is based on
deformable shape matching or curve/surface evolution.
Energy functions are derived from both the image data and
shape constraints in order to drive a deforming shape to the
desired object in the image. In these methods, object shapes
are characterized by different model parameters and
extracted using both the intrinsic properties of the shape
and the image information from the image [11–13]. Explicit
shape descriptors can be easily implemented but cannot
naturally handle topological changes (e.g., local shape
topology might be different among subjects). This limitation
can be addressed by using implicit shape descriptors also
known as the level set method [14]. Typical level set
methods include the geometric and the geodesic active
contours introduced in [15,16], and extensions of the
geodesic active contours can be achieved using the split
schemes like the Additive Operator Splitting scheme [17]
and the multigrid techniques [18]. The boundary-based
geodesic active contour model was also improved by
generating the model using the information of the entire
image [19,20]. Compared to the voxel-based segmentation
algorithms, shape evolution methods incorporate relatively
global shape information and provide more robust segmen-
tation of objects in medical images [21–26].

In shape evolution methods, maximizing the posterior
distribution of the desired parameters is not analytical due
to the limitation of the observation process and lack of
information to construct statistical models and generative
models from the observation data. To deal with such
estimation complexity, additional features can be used as
hidden variables for compensating the incomplete obser-
vation data. One can utilize the elaborate techniques such
as the expectation–maximization (EM) algorithm in which
the distributions of the incomplete observation data are
identified with help of the estimation of hidden variables.
The hidden variables are unknown and are associated with
missing information and presented as the underlying local
voxel labeling.

In the literature, it has been illustrated that voxel-wise
segmentation techniques can utilize the EM algorithm for
learning the generative models due to the direct dependen-
cies between the estimation variables of the models and the
hidden variables. However, in the shape evolution tech-
niques, it is more challenging to find the relationship
between the hidden variables and the shape model
variables. In Ref. [27], the dependency between the
learning data from the EM algorithm and the shape model
parameters is defined by an explicit space-conditioned
probability model, where the shape model parameters are
represented by a level set function. In Ref. [28], the
evolving boundary is constrained by the normalized
difference (using least squares fitting) between the expected
value and the actual value from current boundary using an
adaptive EM model. Thus, our focus herein is to study an
effective approach to improve the shape-based segmenta-
tion using hidden variables in the EM framework.

A new shape evolution approach is proposed in the
probabilistic framework using the EM algorithm, wherein
additional features are used as the hidden variables for
compensating the incomplete observation data. Building
upon the EM shape-based framework, our scheme can be
considered as a statistical shape-based segmentation
method combined by the hidden variable model. The
object shape is represented by both parametric and
nonparametric level set functions proposed in Ref. [29],
and the hidden variable is defined as the underlying voxel
labeling. The object shapes can be solved using the EM
algorithm. In the E-step, the expected likelihood is
computed, which includes two terms: the observation
likelihood and the prior distribution of the hidden
variables given the shape-based model and image
information. In the M-step, the parametric and nonpara-
metric level set functions are updated by maximizing their
posterior distributions, weighted by the results of the
E-step. The two steps can be iteratively performed until
the evolving shape converges.

According to the joint curve evolution [29], the object
shape can be represented by both parametric and nonpara-
metric curves. Parametric shape can be easily embedded
with statistical models so that the shape is well constrained,
and nonparametric shape could match object boundary
better due to its relatively higher degree of freedom. Thus,
the object shape is deformed in two different domains: the
image domain, which adopts the nonparametric curve
evolution, and the statistical shape domain, which adopts
the parametric curve evolution using a new Principal
Component Analysis (PCA) analysis. Similar to the Active
Appearance Model, in the training stage, the covariance
matrix is defined by not only the object shapes but also the
image intensity patterns inside the objects. It is worth noting
that Pohl et al [27] also used the prior probability values of
the missing parts variables under the level set function
model. However, one important difference is that in Ref.
[27], although the hidden variables and the shape-based
model parameters are related, the estimation of the
observation likelihood is independence under the shape
model. Here, we utilize this fact that the shape-based
parameters have effects on both the estimation hidden model
variables and the estimation of the observation likelihood.
Additionally, the use of joint parametric and nonparametric
shapes could not only preserve robustness by using
statistical models but also yield more accurate segmentation
by taking advantage of the nonparametric shape matching.

The remainder of this article is organized as follows.
Section 2 gives an overview of the segmentation
algorithms modeling the relationship between image data
and statistical shape distribution. In Section 3, we describe
the combination of the hidden variable model and the
statistical shape-based model, which is then used in the
several segmentation applications described in Section 4.
Finally, the discussion and conclusion are presented in
Section 5.
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