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Abstract

Constrained independent component analysis (CICA) eliminates the order ambiguity of standard ICA by incorporating prior information
into the learning process to sort the components intrinsically. However, the original CICA (OCICA) and its variants depend on a learning
rate, which is not easy to be tuned for various applications. To solve this problem, two learning-rate-free CICA algorithms were derived in
this paper using the fixed-point learning concept. A complete stability analysis was provided for the proposed methods, which also made a
correction to the stability analysis given to OCICA. Variations for adding constraints either to the components or to the associated time
courses were derived too. Using synthetic data, the proposed methods yielded a better stability and a better source separation quality in
terms of higher signal-to-noise-ratio and smaller performance index than OCICA. For the artificially generated brain activations, the new
CICAs demonstrated a better sensitivity/specificity performance than standard univariate general linear model (GLM) and standard ICA.
Original CICA showed a similar sensitivity/specificity gain but failed to converge for several times. Using functional magnetic resonance
imaging (fMRI) data acquired with a well-characterized sensorimotor task, the proposed CICAs yielded better sensitivity than OCICA,
standard ICA and GLM in all the target functional regions in terms of either higher ¢ values or larger suprathreshold cluster extensions
using the same significance threshold. In addition, they were more stable than OCICA and standard ICA for analyzing the sensorimotor
fMRI data.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Independent component analysis (ICA) [1] is an
advanced signal processing method designed to separate
mutually independent components (ICs) from their ob-
served mixtures without using any prior information of
them. As a multivariate and data-driven method, ICA has
gained popularity in many signal processing fields [1],
including functional magnetic resonance imaging (fMRI)
data analysis [2—4]. Without need of prior modeling for
brain response, ICA bestows a large freedom to analyzing
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fMRI data with various kinds of tasks or even the null
hypothesis data [5,6]. However, standard ICA does not
extract ICs with a fixed order [7], resulting in a problem of
IC comparisons across different runs or across different
subjects. Constrained ICA (CICA) [8,9] provides a
solution for this problem. In this approach, prior
information contained in constraints is integrated into the
source separation process, so that the decomposed ICs are
sorted intrinsically. This idea was first proposed by Luo
et al. [10] but was explicitly defined by Lu and Rajapakse
who also provided a CICA algorithm based on a more
advanced ICA method [8,11]. For this reason, the
conceptual framework of CICA proposed by Lu and
Rajapakse will be employed in this paper, though a similar
approach, the semi-blind ICA, has later been proposed by
Calhoun et al. [12].
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One problem of the original CICA (OCICA) algorithm
proposed by Lu and Rajapakse [8,11] is that it uses a
learning rate to control the updating gradient at each
iteration. This learning rate is not easy to tune for various
applications, and a bad choice of it could completely
destroy the algorithm convergence [1,13]. For fMRI data
analysis, the OCICA was directly adopted to extract
temporally independent components using temporal con-
straints. As extracting spatially independent components
represents another major interest of ICA-based fMRI data
analysis [2,14], CICA should be adapted to have these two
capabilities, as well as applying either spatial or temporal
constraints. Moreover, the stability analysis for CICA
given in Ref. [11] was incomplete and was based on a
nonestablished condition, so a complete stability analysis
is still required to prove the convergence of CICA.

We have recently proposed a fixed-point CICA in a
conference abstract [15], which does not need a learning rate.
The purpose of this paper is to provide full derivations,
comprehensive evaluations and detailed convergence anal-
ysis for the fixed-point CICA algorithms. Method evalua-
tions were conducted using synthetic one-dimensional (1D)
signal and two-dimensional (2D) fMRI data and sensorimo-
tor fMRI data.

2. Theory
2.1. ICA with constraints and the OCICA algorithm

Assuming the observed signal x=(x;, x>,..., x,,)T to be a
linear mixture of some unknown mutually independent
sources S=(S1, $2,..., ;) 7. x=As, where A is an unknown
nxm matrix (m<n), standard ICA [7] is to seek an mxn
unmixing matrix W=(wj, w,,..., wm)T , such that s can be
approximately recovered by y=Wx, with y=(1, V2,..., V)"
In general, ICA can be formed and solved as an optimization
problem to minimize an object function O(.) that measures
the independence of the output components. One such
function used in FastICA [1,16] and OCICA is:

o) = = 3 T, (1)

where J (.) is the negentropy and can be approximated by
Ref. [17]:

T (y;) = c[E{G(y;)} ~E{G(n)}]", (2)

where ¢ is a positive constant, G(.) is a nonquadratic
function and v is a Gaussian variable with a zero mean and a
unit variance. This approximation was used in the OCICA
and will be used in our proposed methods as well.

Due to the blindness to s and A, ICA is up to two
ambiguities [1]: the scale ambiguity and the order
ambiguity. Since signal shape is usually more informative
than the amplitude in practice, the scale ambiguity is
generally less problematic than the order ambiguity. To

eliminate the order ambiguity, prior information was
incorporated to constrain the directions of IC learning in
CICA [8,11]. Denote the constraint function by (y)=(q(v1),
o qrya)T (M<m) and convert them into equality
constraints: ¢; (y;)+z2=0(i=1,...M, and z is a slack variable).
OCICA was solved using an augmented Lagrangian
function [13]:

LW, p1,2,2) = O(y) + 1" (q(y) + )
+ 2l + 211
M) + 3yl )T ®)

where u=(u,..., )’ and A=(1,,..., Ay)” are two sets of
Lagrange multipliers, y is the scalar penalty parameter, z=
(215 Zipeees ZM)T and ‘Il means Euclidean norm. h(y)=(%;
(¥)-.., hy (y))" are the N equality constraints: E{(Wx)?}=I
used to facilitate an easy ICA solution [1]. The last item,
1291111, is the penalty term to ensure that the local
convexity assumption holds at a solution of the optimiza-
tion problem [18]. Since the optimal value of z can be
obtained as (z*)* = max{O, — %[,u + 'yq(y)]} via maxi-
mizing &1(W, u,z) = 1" (a(y) +2°) + Jvlla(y) + 22| with
respect to (wrt) z%, the augmented Lagrangian function in
Eq. (3) can be rewritten as:

(W, 1, 2) = 2(y) + L1(W, ) + A"h(y) + %vllh(y)llz,
(4)

where £, = (W, u,z*) (see Eq. A.4). Without introduc-
ing any ambiguity, £.* and £ will be used interchangeably
hereafter in this paper, and so will be £.,* and &;. A
Newton-like gradient method can be used to solve the
optimization problem of CICA [8]:

Wk +1 = Wk - ﬂvwﬁ/ VwVwQ, (5)

where Vy and VVy mean the first and second derivative,
respectively, and m is the learning rate. This algorithm
involves an inversion of the Hessian matrix, which is usually
computationally intensive even when an approximation was
used [8,11]. Nevertheless, this matrix inversion can be
avoided [19] upon using data prewhitening that is now a
general preprocessing step in ICA [1].

We can then get Vy& =[V,1%,...,V,, ] and
Vo Vwe = [V, Vi, L1,..., Vw, Vi, ] with:

prﬂl =K Vw,,‘]p (J’p) = ﬂpE{xq,P (yp)} (63)
Vi, Vi, 21 = '“pE{Xquﬁp W)} = ”pE{XTX}E{q”P )}
= mE{q"» () } (6b)

Since the maxima of J(y;) is approached at certain
optima of E{G(y;)}, the second item in Eq. (2) can be
ignored during the process of pursuing the optimal W [16].
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