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Abstract

Due to the presence of artifacts induced by fast-imaging acquisition in functional magnetic resonance imaging (fMRI) studies, it is very

difficult to estimate the variance of thermal noise by traditional methods in magnitude images. Moreover, the existence of incidental phase

fluctuations impairs the validity of currently available solutions based on complex datasets. In this article, a time-domain model is proposed

to generalize the analysis of complex datasets for nonbrain regions by incorporating artifacts and phase fluctuations. Based on this model, a

novel estimation schema has been developed to find an appropriate set of voxels in nonbrain regions according to their levels of artifact and

phase fluctuation. In addition, noise intensity from these voxels is estimated. The whole schema is named COmplex-Model-Based Estimation

(COMBE). Theoretical and experimental results demonstrate that the proposed COMBE method provides a better estimation of thermal noise

in fMRI studies compared with previously proposed methods and suggest that the new method can adapt to a broader range of applications,

such as functional connectivity studies, evaluation of sequence designs and reconstruction schemas.
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1. Introduction

Thermal noise in magnetic resonance (MR) images is a

very important parameter. The estimation of thermal noise

not only provides measurements of the quality of a magnetic

resonance imaging (MRI) system [1] and quantification of

an MR signal, especially signal-to-noise ratio (SNR) for

functional MRI (fMRI) signal [2], but also offers a general

measure to evaluate the performance of MRI sequences [3]

and reconstruction schemas [4].

Analytical estimation methods that determine thermal

noise have been extensively studied. In most cases, thermal

noise is determined from magnitude images, which can be

modeled as a Rician distribution that has no analytical

solution. When the SNR is high, the Rician distribution can

be approximated as Gaussian in nature, and thermal noise

can be estimated as the standard deviation of magnitude [5].

When the signal is zero, the Rician model evolves to a

Rayleigh distribution, and thermal noise can be estimated by

dividing the standard deviation of magnitude with a

correctional factor (about 0.655) [6,7].

Technological development and clinical research applica-

tions of fMRI methods have generated three new challenges

in estimating noise. First, unlike anatomical images, fMRI

datasets in high SNR regions, such as the brain, contain

significant temporal signal changes, hence invalidating the

Gaussian method. Temporal signal changes may include

fluctuations in blood-oxygenation-level-dependent (BOLD)

signals induced by tasks or physiologic noise during rest [8].

Second, the presence of significant artifacts in background

regions (nonbrain regions), acquired by fast-imaging meth-

ods such as Echo Planar Imaging (EPI) [9] and spiral [10]

pulse sequences, makes the Rayleigh method inapplicable.

To solve this problem, researchers have developed several

methods, including averaging variances over real and

imaginary channels (Average method) [11–13], maximum

likelihood (ML)-based estimations [12,14] and a double-

acquisition method employing the analytical form of even

moments of the Rician distribution [15].
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The final problem seen in fMRI datasets is incidental

phase fluctuations, which are derived from various time-

dependent sources of variation, including flip-angle inho-

mogeneity, filter responses, system delay, noncentered

sampling windows and others [16]. However, the above-

mentioned methods did not explicitly take phase fluctuation

into account as a random variable.

In this article, a new method is proposed for fMRI

datasets. It estimates thermal noise in the presence of image

artifacts and phase fluctuations for fMRI datasets. By ana-

lyzing the real and imaginary channels of complex-valued

data in the time domain, it becomes evident that thermal

noise can be accurately estimated. Theoretical simulations

and experimental results demonstrate that the new method,

compared with previously proposed methods, provides a

better estimation of thermal noise and a higher capacity for

a broader range of artifact-to-noise ratios (ANRs) and phase

fluctuations. Thus, the new method is suitable for various

applications, including functional connectivity studies,

sequence evaluation and reconstruction evaluation.

2. Theory

It is well known that in the brain, real [Rb(t)] and

imaginary [Ib(t)] channels in a given voxel of reconstructed

fMRI datasets have three components. These components

are: the magnitude of the signal S(t), the phase of the signal

h(t) and the thermal noise n(t) at time t. The time-domain

model within a given voxel can be expressed as:

Rb tð Þ ¼ S tð Þcos h tð Þð Þ þ n1 tð Þ

Ib tð Þ ¼ S tð Þsin h tð Þð Þ þ n2 tð Þ ð1Þ

where n1(t) and n2(t) are additive thermal measurement

noise [17,18]. As previously described, the magnitude and

phase portions of the signal are temporally varying

quantities. Thus, they may be modeled by temporally

constant mean-varying and time-varying portions

S(t)=S+DS(t) and h(t)=h+Dh(t). The temporally constant

means of magnitude and phase are S and h, while their time-

varying portions are DS(t) and Dh(t), respectively.
Any signal that is present in the background region

of reconstructed fMRI datasets is due to ghosting

artifacts. Thus, it is described by a decreased version

of the original signal. The original magnitude signal S(t)

in Eq. (1) is decreased by an artifact proportionality factor

c to yield cS(t)=cS+cDS(t) instead of S(t) for an artifact-to-

noise model.

In fMRI data, the mean magnitude signal is usually much

larger than its temporal variation SHDS(t), so that the

artifact magnitude signal is also much larger than its temporal

variation cSHcDS(t). This allows the variation of the

artifact signal to be neglected when cS(t) is comparable to

thermal noise. Thus, the artifact cS(t) can be taken as a

temporally constant quantity a, which is called the artifact

level. The artifact-to-noise complex model can be written as:

R tð Þ ¼ acos hþ Dh tð Þð Þ þ n1 tð Þ

I tð Þ ¼ asin hþ Dh tð Þð Þ þ n2 tð Þ: ð2Þ

In nonartifact voxels, a=0, so that real and imaginary

channels consist only of noise. The phase fluctuation Dh(t)
in fMRI data is relatively small. This allows Eq. (2) to be

written as:

R tð Þ ¼ acos h tð Þð Þ þ n1 tð Þ � a cosh� sinhdDh tð Þð Þ þ n1 tð Þ

I tð Þ¼ asin h tð Þð Þþn2 tð Þ� a sinhþ coshdDh tð Þð Þ þ n2 tð Þ ð3Þ

with the use of trigonometric addition formulas for sines and

cosines along with small-angle approximations.

By definition, thermal noise n1(t) and n2(t) in the two

channels are mutually independent and identically distrib-

uted with zero means and variances r0
2. Additionally, the

mean and the variance of phase fluctuation are zero and rh
2,

respectively. With the above model specifications, the mean

(expected) values for the real and imaginary parts of the

artifact-to-noise complex model are:

lR ¼ acosh

lI ¼ asinh ð4Þ

while their variances are:

r2
R ¼ a2sin2hd r2

h þ r2
0

r2
I ¼ a2cos2hd r2

h þ r2
0: ð5Þ

Since we do not assume any particular distribution for

thermal noise and phase fluctuations, we do not have a

likelihood and cannot estimate model parameters with

maximum likelihood estimates (MLEs). Instead, we will

estimate model parameters with method of moment estima-

tors (MMEs). MMEs are found by equating population

moments to sample moments [19]. MMEs for the artifact

level a and the mean phase h are found by equating

population means to sample means (first moments). This

yields the equations:

R
P ¼ âcos ĥ

� �
; I

P ¼ âsin ĥ
� �

ð6Þ

where R̄ and Ī are the sample means of real and imaginary

channels. The solution to these two equations with two

unknowns yields MMEs that are:

â¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
Pð Þ2 þ I

Pð Þ2
q

; ĥ¼ tan�1 I
P
=R
Pð Þ: ð7Þ

For convenience, â is named the artifact level, while ĥ is

the estimated phase mean. MMEs for variances r0
2 and rh

2
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