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Abstract

We use displacement encoding pulsed field gradient (PFG) nuclear magnetic resonance to measure Fourier components Sq of flow

displacement distributions P(f) with mean displacement hfi for Newtonian and non-Newtonian flows through rocks and bead packs.

Displacement distributions are non-Gaussian; hence, there are finite terms above second order in the cumulant expansion of ln(Sq). We

describe an algorithm for an optimal self-consistent cumulant analysis of data, which can be used to obtain the first three (central) moments of

a non-Gaussian P(f), with error bars. The analysis is applied to Newtonian and non-Newtonian flows in rocks and beads. Flow with shear-

thinning xanthan solution produces a 15.6F2.3% enhancement of the variance r2 of displacement distributions when compared to flow

experiments with water.
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Displacement encoding pulsed field gradient (PFG)

nuclear magnetic resonance (NMR) experiments, such as

classic diffusion experiments [1] or the 13-interval [2]

alternating pulsed field gradient stimulated echo sequence

(APGSTE) employed in this work, produces NMR signals

equal to the ensemble average over all spins of their phase

factors Sq=heiqfi=
R
eiqfP(f)df, where f is the displace-

ment of a spin during the experimental evolution time D, q

is set by PFGs and P(f) is the underlying distribution of

molecular displacements. By implication, we consider

unwanted coherence pathways to have been suppressed

by phase cycling and spoiler gradients, and the definition D

contains appropriate corrections for finite-length gradient

pulses. The data are Hermitian (Sq=S�q*) and can be

analyzed by Fourier-transforming a set {Sq} to obtain

the volume-averaged propagator P(f) [3]. Fourier trans-

form requires that data be sampled at adequate density [4]

up to values of q such that Sq goes to 0. Alternatively, for

small q, the data can also be analyzed using cumulant

analysis [5]:

lnheiqfi ¼ lnjheiqfij þ ih ¼
Xl
j¼1

iqð Þj

j!
Xj ð1Þ

where h is the phase of NMR signals and Xi are cumulants.

Matching the real and imaginary parts shows that h is

expanded in odd powers of q and, therefore, has odd q-space

inversion symmetry hq=�h�q. The logarithm of the magni-

tude |Sq| of NMR signals is expanded in even powers of q and

has even q-space inversion symmetry ln|Sq|= ln|S�q|. The

cumulant analysis of displacement encoding NMR data is

useful for several practical reasons. Firstly, the first three

cumulants take particularly simple forms X 1 = hfi,
X2=h(f�hfi)2i=r2 and X3=h(f�hfi)3i=c3, which are the

mean, variance and third central moment, respectively. These

scalar measures of displacement distributions are handy for

comparisons between theory, simulation and experiment;

furthermore, one can publish the data with error bars, adding

quantitative meaning to such comparisons. Secondly, low-q

cumulant data are accessible even when gradient strengths

available in the laboratory are weak. Finally, measuring at
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low q permits the use of short PFG encoding times, which is

particularly important for limiting magnetization losses in the

presence of flow or diffusive displacements through internal

fields, as they occur in rocks or samples containing gas

bubbles. In this paper, we describe an algorithm for fitting in a

self-consistent way [6] cumulants associated with non-

Gaussian distributions, and we illustrate its use with one

low-q data set obtained from a flow experiment through a

sandstone. The algorithm requires Hermitian symmetrization

of the data prior to their analysis in order to remove small

deviations from hermiticity, which are typically caused by

postpulse eddy currents. We discuss the benefits and limits of

validity of the symmetrization step. Finally, we apply the

cumulant analysis to Newtonian and non-Newtonian flows in

bead packs.

For Gaussian displacement distributions, cumulant anal-

yses are simple because all cumulants above the second

vanish. PFG-derived diffusion data measuring Gaussian

displacements are analyzed by plotting the logarithm of the

magnitude of NMR signals against q2 and by reading the

slope of the straight line to determine the diffusion

coefficient [1]. For non-Gaussian displacement distribu-

tions, higher-order terms do not vanish. Nevertheless, we

want to fit the data to obtain the first three cumulants, using

the truncated cumulant expansion, at small q:

h qð Þ ¼ hfiq� 1

6
c3q3 ð2Þ

lnjS qð Þj ¼ � 1

2
r2q2: ð3Þ

For a good fit to the data, the distribution of residuals

must be free of systematics and Gaussian. We consider two

effects as giving rise to systematic residuals. Firstly, they

appear for fit ranges above some maximal fit range |qmax|,

where the truncated cumulant expansion is insufficient to

describe the data. We will use this consistency requirement

to define |qmax| later on. Secondly, the data may not be

strictly Hermitian due to experimental artifacts breaking the

odd and even q-space inversion symmetries of Eqs. (2) and

(3). The non-Hermitian component is a small fraction of the

signal—if it were large there would be something seriously

wrong with the experiment—but it may not be small when

compared to the noise on the data.

For quantitative illustration, we now consider two

APGSTE echoes with broken Hermitian symmetry Eq=Ae
ih

andE�q=(A+e)e
�i(h+a), where e and a parameterizes a small

deviation from hermiticity. Suppose we want to fit these

signals, using standard least squares methods, to find our best

estimate of the true Hermitian signal by Fq=F�q* =Bei/. In

this simple case, we canmanually perform the least squares fit

by writing down the two terms of the respective sums

of squared residuals vM
2 =(A�B)2+(A+e�B)2 for magni-

tudes and vm
2=(h�/)2+(�h�a+/)2 for phases. Minimiz-

ing the expressions of v2 with respect to B and /, we

obtain B=A+e/2 and /=h+a/2; thus, the fitted result is

Fq ¼ ðAþ 1
2
eÞei hþa=2ð Þ. Now we construct hermitically sym-

metrized data Hq ¼ 1
2

Eq þ E�q
� �

for comparison with

the fitted Fq . Using the definition of our example,

Hq ¼ Acos a=2ð Þ þ 1
2
eeia=2

�
ei hþa=2ð Þ�

. We observe that by

keeping terms to first order in (a,e), the symmetrized Hq

reduces to the least squares result Fq. Consequently, for small

a and e/A, we can fit Eqs. (2) and (3) to either the un-

symmetrized Eq or to the symmetrized Hq; the fit results will

be the same. We will fit to symmetrized data because the v2

and noise m2 evaluated from these fits do not include contri-

butions from symmetry breaking experimental artifacts.

We now maximize the range over which symmetrized

data can be fitted well. The consistency of the distribution of

residuals with a Gaussian distribution, for a given fit range

qr, is a function of v2 and m2, the number of degrees of

freedom m of the fitting function and the number of data

points N. It is measured by the incomplete C function:

Qu
1

C að Þ

Zl

x

e�t t a�1dt ð4Þ

Fig. 1. Low-q data from displacement encoding an NMR experiment on

water flow through a sandstone: hfi=233 Am, D=200 ms, plotted against

q. Solid lines represent symmetrized data; dashed lines represent raw data.

Dotted lines indicate maximal fit ranges determined automatically, as

described in the text.

Fig. 2. Quality Q of odd and even cumulant fits to the symmetrized data

shown in Fig. 1 as a function of fit range qr. The horizontal dotted line

indicates the threshold Qc=0.05. Large fit ranges for which Q bQc

corresponds to non-negligible contributions of the fourth and fifth

cumulants to the signal, for the even and odd fits, respectively.
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