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a b s t r a c t

Using the threshold conditions and bound state energies investigated earlier by us as a critical input we
systematically study the nature of band formation in the transmission coefficient generated by Dirac
comb potentials having equispaced (i) attractive, (ii) repulsive and (iii) alternating attractive and re-
pulsive delta terms having same strength and confined within a fixed range. We find that positions of the
peaks of transmission coefficient generated by a combination of one attractive and one repulsive delta
terms having same strength and separated by gap a is independent of the potential strength and coincide
with the energy eigenvalues of 1D box of range a. We further study analytically and numerically the
transmission across Dirac comb potentials containing two or three delta terms and these results are
useful in the analysis of the transmission in the general case. In the case of Dirac comb potentials con-
taining Na attractive delta terms we find that the nature of the first band and higher bands of the
transmission coefficient are different, and if such a potential generates Nb number of bound states, the
first band in the transmission coefficient generated by the potential has = −N N NT a b1 peaks. In the case of
higher bands generated by delta comb potential having N delta terms each band has −N 1 peaks. Further
we systematically study the behavior of band gaps and band spread as a function of potential strength
and number of terms in the Dirac comb. The results obtained by us provide a relation between bound
state spectrum, number of delta terms in the Dirac comb and the band pattern which can be explored for
potential applications.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The study of Schrodinger equation governed by an array of
delta function potential provides a simple basis to initiate the in-
vestigation of several problems in solid state physics. The well-
known Kronig–Penney model using delta function potentials
provides a simple picture for band formation in solids [1]. Locally
periodic one dimensional array of potentials is useful in the study
of lattices in the crystal and localization of different types of dis-
orders in lattices [2–5]. They are useful to explore the effect of
impurities in solids [6–10]. The study of transmission across these
potentials is of considerable interest because it is helpful in the
calculation of transport of electrons through nanostructures [11],
conducting polymers [12], metals, semiconductors [13] and
quantum wires [14,15]. Tsu and Esaki [16] being pioneers in this
field studied the transport in terms of resonant transmission in a
finite superlattice. Transmission properties of delta potentials also
find application in the field of acoustics [17] and optics [18]. As a

consequence there is a continued interest in the spectral and
transmission properties generated by an array of delta potentials
[19–26]. In this paper we focus on some novel features generated
in the transmission coefficient for different types of arrays of lo-
cally periodic delta potentials. Our work has potential applications
in the study of periodic structures like quantum wires with serial
stubs and even disordered structure with defective stubs, tunnel-
ing of Bose–Einstein condensates [28] and different kinds of lat-
tices [27]. Various mesoscopic structures, heterostructures and
ballistic transport of electrons through carbon nanotubes can also
be studied.

The present work is in a sense, a continuation of our systematic
quantum mechanical study of threshold conditions, bound states,
spectral properties and band structure generated by the array of
delta potentials [29–31]. The types of Dirac comb potentials that
we use to investigate transmission properties are:
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Clearly the parameter a represents the spread of the Dirac comb
potentials listed above. ( )+U N a x, ,N and ( )−U N a x, ,N represent re-
pulsive and attractive Dirac comb potentials containing N terms
respectively. Similarly, when N is even ( )∓U N a x, ,N and ( )±U N a x, ,N

represent the Dirac comb potentials having N/2 pairs of delta
function terms with alternating signs. On the other hand, when N
is odd, unpaired last term in ( )∓U N a x, ,N and ( )±U N a x, ,N is an at-
tractive or repulsive delta term potential respectively. The para-
meter λ used above has the dimensionality of length. In the pre-
sent paper we use the system of units in which = 1 and 2m¼1.
Hence the potential strength parameter V and energy E has the
dimensionality of L�2. As a consequence the numerical results
reported in this paper for V and E are in L�2 unit. They can be
converted to more convenient units when mass m is specified. For
example, in the case of electron ( ) = ( )−E eV 0.03816 nm 2 . In our
earlier work [29,30] we have comprehensively studied the bound
state spectrum, threshold conditions and density of states gener-
ated by the above potentials and in [31] we have further examined
systematically the band formation in the positive energy region
generated by the above defined potentials when they are confined
within a box. Our approach unearths a set of new interesting
features present in the transmission coefficient generated by the
above potentials and these are complementary to the results re-
ported in earlier works [19–26] in the same broad area.

In order to understand the pattern of bands generated in the
transmission coefficient generated by the above potential for
general N, it is useful to fully explore analytically and numerically
the transmission coefficient generated by these potentials when
they contain 2 or 3 delta terms. Hence, in Section 2 we explore
analytically and numerically several features of the transmission
co-efficient across two delta function potentials, both of which
may be attractive, repulsive or a combination of attractive and
repulsive delta potentials. In Section 3 we similarly explore
transmission across three delta function potentials. Using the re-
sults obtained in these cases the pattern of behavior of transmis-
sion coefficient for general >N 3 is studied in Section 4. Section 5
contains a comprehensive summary of main results and
conclusions.

2. Transmission across two delta function potentials

Let us first consider transmission in one dimension across a
sum of two delta function potentials given by

λ δ λ δ( ) = ( − ) + ( − ) ( )U x V x a V x a2 51 1 2 2

Here λ1 and λ2 are parameters having dimension of length to
compensate the dimensionality of delta terms. In this paper we
choose λ1¼λ2¼λ¼1. V1 and V2 are potential strength parameters,
but our main focus is when | | = | | = | |V V V1 2 . Using the symbols

=k E2 and the time independent Schrödinger equation governed
by U(x) takes the form
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In the case of transmission, the solution of (6) has the general form
given by
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2 define the
transmission and reflection coefficients respectively and B3¼0.

The wave function is continuous at x¼a and at x¼2a, but their
derivatives are discontinuous due to the delta potential terms [29].
We solve the Schrödinger equation taking this in to account as
described in Refs. [29,30] and obtain the following expression for T
and R.
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Now let us explore the nature of variation of T as a function of
=E k2 in three different cases:

i. when both delta terms are repulsive, i.e., = = >V V V 01 2 ;
ii. when both delta terms are attractive = = − <V V V 01 2 ;
iii. when first delta term is attractive and second one is repulsive,

i.e., − = = >V V V 01 2 .

The case (iii) indicated above is more interesting. In this case the
explicit expression for T and R are:
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In Fig. 1 we depict the variation of T as a function of =E k2 in all
the above three cases when | | =V 30. It is clear that at the peak
positions T¼1 in all cases, indicating that reflectionless trans-
mission occurs at energies where transmission peaks. Interestingly
in case (iii) when − = = | |V V V1 2 , the positions of the transmission
peaks kn

2 are given by

π= = … ( )k n a n/ , 1, 2 14n
2 2 2 2

and these are independent of potential strength | |V . One can
analytically verify the validity of this result by noting that in Eq.
(11) when − = = | |V V V1 2 and π=ka n we get R¼0. The energies kn2

are nothing but the energy eigenvalues of one dimensional box of
range a. This feature does not hold true in cases (i) and (ii) referred
above. However, one expects that in between two peaks, the
variation of transmission coefficient is | |V dependent. In Fig. 2 we
illustrate this by choosing two different values of | |V , having
magnitudes | |V ¼30 and | |V ¼5. When we choose a lesser value of
| |V , expectedly, transmission coefficient is closer to unity over the
entire energy range.

In Figs. 3 and 4 we show the variation of the transmission peak
energy Ep as a function of sequence number p of the transmission
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