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a b s t r a c t

We calculate the electrical conductivity of polycrystalline metallic films by means of a semi-numerical
procedure that provides solutions of the Boltzmann transport equation, that are essentially exact, by
summing over classical trajectories according to Chambers' method. Following Mayadas and Shatzkes
(MS), grain boundaries are modeled as an array of parallel plane barriers situated perpendicularly to the
direction of the current. Alternatively, according to Szczyrbowski and Schmalzbauer (SS), the model
consists in a triple array of these barriers in mutual perpendicular directions. The effects of surface
roughness are described by means of Fuchs' specularity parameters. Following SS, the scattering prop-
erties of grain boundaries are taken into account by means of another specularity parameter and a
probability of coherent passage. The difference between the sum of these and one is the probability of
diffuse scattering. When this formalism is compared with the approximate formula of Mayadas and
Shatzkes (Phys. Rev. B 1, 103 (1986)) it is shown that the latter greatly overestimates the film resistivity
over most values of the reflectivity of the grain boundaries. The dependence of the conductivity of thin
films on the probability of coherent passage and grain diameters is examined. In accordance with MS we
find that the effects of disorder in the distribution of grain diameters is quite small. Moreover, we find
that it is not safe to neglect the effects of the scattering by the additional interfaces created by stacked
grains. However, when compared with recent resitivity-thickness data, it is shown that all three form-
alisms can provide accurate fits to experiment. In addition, it is shown that, depending on the respective
reflectivities and distance from a surface, some of these interfaces may increase or diminish considerably
the conductivity of the sample. As an illustration of this effect, we show a tentative fit of resistivity data
of gold films measured by Chen et al. (Appl. Phys. 60, 659 (2005)). Finally, we present a new version of
Matthiessen's rule that describe, with high accuracy, the way in which the contributions from surface
scattering and grain boundary combine to form the total resistivity of the sample.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The fact that the transport coefficients of small samples are not
independent of size or shape was first observed in measurements
of the electrical conductivity of thin silver films [1]. It was noted
that this phenomenon occurs when one or more of the dimensions
of the sample is comparable in length with the mean free path of
the carriers.

The earliest theoretical treatment of the electrical conductivity
of thin films was given by Thomson, who assumed that—in ac-
cordance with Drude's theory—the conductivity in metals was
proportional to the mean free path and that the scattering at the

external surfaces was completely diffuse [2]. The theory was
considerably advanced by Fuchs, who proceeded from a solution of
Boltzmann transport equation (instead of using the restricted tools
of kinetic theory) and introduced appropriate boundary conditions
[3,4].

If the conduction electrons are perturbed only by an electric
field E, and we assume further the validity of Ohm's law and the
existence of a time of relaxation τ, the Boltzmann equation is [5]
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This equation is solved for the function ( )f r v,1 that describes the
distribution of carriers that are out of thermodynamical equili-
brium. The equilibrium population is given by the Fermi-Dirac
distribution μ= { [( − ) ] + }−f k Texp / 1B0

1. As boundary conditions
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Fuchs assumed that, at each external surface, a fraction p of the
incoming electrons are specularly reflected (that is, the tangential
component of the velocity is conserved but the normal component
changes sign), while the remaining fraction = −q p1 is randomly
scattered and thereafter lost from the conduction process. Fuch's
boundary conditions have been generalized by Lucas who allowed
for the fact that different surfaces may have different specularity
parameters [6]. A number of authors have additionally generalized
this schema by assuming that these parameters are in fact func-
tions of the angle of incidence [7].

Fuch's theory accounts only for the scattering of the conduction
electrons by the external surfaces and, thus, strictly applies only to
single-crystal films. Mayadas and Shatzkes proposed a formula
that explains the additional resistivity often found in practice as
arising from the scattering from grain boundaries—a mechanism
that becomes especially important when grain diameters are
comparable in size to the electronic mean free path [8]. In this
formalism grain boundaries are represented by a parallel array of
plane barriers, in the form of repulsive Dirac delta potentials, and
oriented perpendicularly to the direction of the electric field E
(which we take to be the x-axis)

∑ δ( ) = ( − )
( )
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where the strength of the potential S is an adjustable parameter.
The set of inter-planar distances = −+D x xn n n1 is a random process
with mean D and standard deviation s. Alternatively, the effects of
scattering by grain boundaries are often parameterized in terms of
the reflectivity R of an individual barrier, since this quantity is
more accessible to measurement than the strength S. In the pre-
sent model, these are related as follows:
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The scattering properties of each barrier is taken into account
by first-order perturbation theory and is incorporated into Fuchs’
formula as an angle-dependent contribution to the time of re-
laxation. In this way, the formula of Mayadas and Shatzkes for the
electrical conductivity s of a film of thickness d is [8]
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where D is the mean grain diameter and λ is the mean free path of
the conduction electrons. Also
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We note that Mayadas and Shatzkes considered further the effect
on the resistivity of disorder in the distribution of grain diameters,
characterized by a standard deviation s. They found that the dis-
order contributed with terms of the order ( − )k sexp F

2 2 ; i.e. a
negligible quantity for ordinary metals.

Finally, let sGB and s0 denote the conductivity of a bulk sample
made of identical material than the film; respectively in presence
and absence of grain boundaries. It is found that [8]
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In the formalism of the Boltzmann equation, the scattering of
carriers by the perturbations of the perfect lattice can be ac-
counted for in two different ways. First, the scattering probability
of the electrons by the lattice imperfections may be inserted into
the collision operator—or, in a well-known approximation—added
as a contribution to the time of relaxation τ. The second procedure
consists in taking them into account by means of adequate
boundary conditions. Usually, the first procedure is reserved for
distributed impurities or phonons, while the second is used in
order to account for external surfaces [9]. Unfortunately, the
strength of the impurity scattering can be incorporated into the
collision operator at best only in the form of a self-consistent Born
approximation [10].

Szczyrbowski and Schmalzbauer have criticized the treatment
of Mayadas and Shatzkes—where the effects of the grain bound-
aries enter only via a modification of the time of relaxation—by
pointing out that, for typical values of the Fermi wavelength, the
scattering strength from the barriers is so hight that the use of
Born's approximation may result in serious errors [11]. They pro-
posed that instead, for a more adequate treatment, these should be
taken into account by imposing adequate boundary conditions at
the added interfaces. Furthermore, reasoning that the exact shape
of the grains is not as important as their size or relative distribu-
tion, they proposed an alternative theory in which grain bound-
aries are represented by a triple array of parallel barriers oriented
in three perpendicular directions, one of which is the direction of
the current. The scattering at each barrier is described by a spec-
ularity parameter pGB and a transmittance, or probability of co-
herent passage, TGB. The remaining probability = − −q p T1GB GB GB

measures the fraction of electrons that are diffusely scattered at
the barriers. These quantities qGB, pGB and TGB are numbers be-
tween zero and one [11].

Unfortunately, Szczyrbowski and Schmalzbauer were unable to
present a complete prescription for calculating electrical con-
ductivities based on these premises. To do so is the objective of the
present work. In this paper we solve the Boltzmann transport Eq.
(1), for the case of a polycrystalline metallic film, by means of
Chambers' method [12]. Following Lucas, for a thin film of thick-
ness d, the boundary conditions are described by p0 and pd, as the
respective specularity parameters characterizing the surfaces at
z¼0 and z¼d; and we further define the quantities = −q p10 0 and

= −q p1d d. Grain boundaries are modeled as single array of par-
allel barriers (MS model) or, alternatively, as a triple, mutually
perpendicular, array of such barriers (SS model).

It is well known that the method of Chambers prescribes that
the out-of-equilibrium distribution function ( )f r v,1 can be calcu-
lated by summing a certain characteristic function over all classical
trajectories that end at a given point r inside the sample with a
given terminal velocity v . (The fact that Chambers’ method pro-
vides an exact solution of Boltzmann transport equation has been
proved in multiple occasions [13].) Since the summation over all
classical trajectories cannot be exactly performed (except in a very
restricted number of cases) in this paper we proceed by summing
over a finite random sample of these paths, which is numerous
enough to result in a conductivity calculated within a prescribed
accuracy. We note that, recently, a similar method was applied to
the calculation of the conductivity of thin polycrystalline wires
[14].

There has been some recent work using Monte Carlo simula-
tions to calculate the electrical conductivity in polycrystalline
metallic films, in which the authors examine the impact of surface
roughness and microstructure on the conductivity and make
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