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a b s t r a c t

Properties of plasmon excitations in two-dimensional (2D) atomic cluster systems are theoretically
studied within an extended Hubbard model. The collective oscillation equations of charge, plasmon ei-
gen-equations and the energy-absorption spectrum formula are presented. The calculated results show
that different symmetries of plasmons exist in the cluster systems, and the symmetry of charge dis-
tribution in the plasmon resonance originate from the intrinsic symmetry of the corresponding eigen-
plasmon modes, but not from the symmetry of applied external fields; however, the plasmon excitation
with a certain polarization direction should be excited by the field in this direction, the dipole mode of
plasmons can be excited by both uniform and non-uniform fields, but multipole ones cannot be excited
by an uniform field. In addition, we show that for a given electron density, plasmon spectra are red-
shifted with increasing size of the systems.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, more and more researchers have paid close
attention to plasmon properties in nano-structure systems be-
cause of their fundamental significance [1–12] and some potential
applications [13–22] including optical imaging [16], single-mole-
cule sensing and spectroscopy [17,18], photocatalytic reactions
[19], nano-photonics and -electronics [20] and cancer therapy [22].

As the nanotechnology and scanning tunneling microscope
(STM) are developed and improved rapidly, the studies of elec-
tromagnetic response of tiny cluster systems with few atoms have
come true in experiment. Particularly, for microminiature metal
and semiconductor particles [23–26], the collective electro-
magnetic response can be proceeded explicitly, owing to the ex-
quisite control of the shape and size of atomic and molecular
clusters. Recently, theoretical studies of plasmon excitation in the
atomic clusters base on the random-phase approximation (RPA)
[27–29] and time-dependent density functional theory (TDDFT)
[10,12,30–36]. In these methods, the plasmon excitations are
mostly calculated via the dipole response and other characteristic
responses under applying an external field, and the excitations are
determined by the corresponding response resonances. However,
the modes of plasmons predicted in this way are dependent on the
applied external fields. In the present paper, we apply an eigen-
equation method based on the quantum response theory and
random phase approximation to study the plasmon excitations in

two-dimensional (2D) atomic cluster systems. In Ref. [12], the
plasmon resonances are investigated by calculating the dipole-
response function of 2D atomic cluster systems. In present work,
we find that in 2D cluster systems there are not only dipole
plasmons, but also multipole plasmons, and their mixtures. In fact,
with the eigen-equation method, we can find out all types of
plasmon modes in the systems. We also calculate energy absorp-
tion spectra for different applied external electric fields, and find
that the external fields of different symmetry and direction excite
different plasmon modes. The plasmons of dipole mode can be
excited by both uniform and non-uniform fields, but the higher
multipole plasmons cannot be excited by uniform field. Further-
more, the charge distributions are presented for different modes of
plasmon excitations, which show different symmetry and polar-
ization of the plasmon modes.

2. Model and theoretical approach

In this section, we will present the formulae for calculating
plasmon excitation in 2D atomic cluster system, which is an

×N Nx y square lattice. For simplicity, an one-band external-field
perturbed Hubbard model is employed, and the model hamilto-
nian is
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where t is the tight-binding hopping matrix element which de-
termines the width of the electronic band by 4t, δ represents the
nearest neighbor vector, ( )σ σ

†
′d dl l is the creation(annihilation) op-

erator in the Wannier representation, and =σ σ σ
†n d dl l l . ( )V tl

ex is the
perturbation external potential, U and V are the on-site and inter-site
coulomb repulsions respectively. By using mean field approximation,
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Where the deviation of average occupation δ〈 ( )σn tl is induced by
external field ′V

l
ex. Here, in the effective site-energy
δ〈 ( )〉 = 〈 〉 + 〈 ( )〉σ σ σU n t U n U n tl l l0 , only the time-dependent part

δ〈 ( )〉σU n tl is considered, and the time-independent part
〈 〉 ≈ 〈 〉σ σU n U nl 0 0 is ignored, because it doesnot give rise to effects on

the dynamics properties of the system. Furthermore, we do not
consider the magnetic resolution, that is to say, the average occu-
pation number 〈 ( )〉 = 〈 ( )〉σn t n t /2l l is spin-independent, so we have
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We will take the following transform in Eq. (3)
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where ψ ( )ln is the eigenvector of the unperturbed tight-binding
model, corresponding to eigenvalue En. The eigenvalue is
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where = … = … = …n N n N l N1, 2 , 1, 2 , 1, 2x x y y x x, and = …l N1, 2y y.
Substituting Eq. (4) into Eq. (3), we have
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Based on the standard linear-response theory, the response of charge
number to the time-dependent perturbation can be written as
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where the Fourier transform with respect to time has been taken,
and ( )ωΠ ′l l, , is the Lindhard function and can be calculated by
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The 2 appears in the front of Eq. (9) corresponds to two spins, and f
(E) are Fermi function. Therefore, the frequency-dependent response
of charge number is
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For simplicity, Eq. (10) can be written as
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The charge response is δ ω δ ω( ) = ( )Q e nl l , then
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In order to give the eigen-oscillation equation, we make the external
potential ω( ) =′V 0

l
ex , and have
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According to eigen-equation (14), the plasmon excitation frequency
ω can be calculated by
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It should be noted that Eq. (15) has no real solutions for the finite
small imaginary part γi . In the practical calculation, a small imaginary
part γi is necessary, and the plasmon eigen frequency ω is obtained
by R ω[ ( )] =Re 0, with R ω( ) ∼⎡⎣ ⎤⎦Im 0. This implies that spectrum

function Rω ω( ) = ( )⎡⎣ ⎤⎦A Im 1/ will show a peak at the plasmon fre-
quencyω. Here we want to point that the eigen resolution should be
exactly real when γ = +i i0 , and ω( )A will give an infinite peak at
plasmon frequency.

When a perturbation external field is applied to the system, the
energy absorption can be calculated as
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where ω( )J r, is the current density induced by external field in the
system, and ω( )E r, (or ω( )V r, ) is the total electric field. By some
calculations, we can simplify Eq. (16) as
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where ρ ω( )r,in is charge density induced by the external field
ω( )V r,ex in the system.

For our tight-binding model, the absorption spectrum function
can be written as

∑ω ω δ ω ω( ) = − ( ) ( ) *
( )

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎡⎣ ⎤⎦
⎫
⎬
⎭

A Q V
1
2

Im
18

L
l

l l
ex

Here, we want to point that in present work we make a dynamical
mean-field approximation, which is equivalent to the RPA, and ignore
the exchange potential; however, calculations in Ref. [7] indicate that
in comparisonwith the pure RPA the exchange term gives rise to only
very slight shift in plasmon frequency. Therefore, we believe that
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