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a b s t r a c t

The spin wave dynamics, including the magnetization, spin wave dispersion relation, and energy level
splitting, of Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes are systematically
calculated by use of the double-time Green’s function method within the random phase approximation.
The role of temperature, diameter of the tube, and wave vector on spin wave energy spectrum and
energy level splitting are carefully analyzed. There are two categories of spin wave modes, which are
quantized and degenerate, and the total number of independent magnon branches is dependent on
diameter of the tube, caused by the physical symmetry of nanotubes. Moreover, the number of flat spin
wave modes increases with diameter of the tube rising. The spin wave energy and the energy level
splitting decrease with temperature rising, and become zero as temperature reaches the critical point. At
any temperature, the energy level splitting varies with wave vector, and for a larger wave vector it is
smaller. When pb¼π, the boundary of first Brillouin zone, spin wave energies are degenerate, and the
energy level splittings are zero.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The concept of spin waves as elementary excitations in mag-
netically ordered materials was presented by Bloch [1] in the early
1930s. Following the discovery, spin wave excitations have at-
tracted great interest in experimental [2–24] and theoretical [24–
38] studies due to their essential role for explaining magnetic or-
dering [1,39] and spin dynamics [40]. Experimentally, the spin
wave can be conveniently probed by ferromagnetic resonance [5–
9], Raman and Brillouin light scattering [10–14], and inelastic
neutron scattering [15–22]. Seen from the perspective of the the-
ory, the semi-classical picture of spin waves was thoroughly ex-
plored [39,41,42] and the quantum picture was studied by means
of the many-body Green's function method (MBGFM) of quantum
statistical theory [25–27]. As low dimensionality and quantum
fluctuations on curved surfaces of nano-systems are highly inter-
esting, spin waves propagating on the surface of the non-
ferromagnetic nanotube in a magnetic field were studied in Refs.
[43–47]. In these studies the spectrum of spin waves on the surface
of a semiconductor nanotube in magnetic field was calculated
using the random phase approximation (RPA) within the

framework of short-range electron interaction model in Hartree–
Fock approximation (HFA). More recently, there has been intense
interest in the spin wave excitations of ferromagnetic (FM) and
antiferromagnetic (AFM) nanotubes, nanowires and nanorings
[48–60], where the spin wave mode coupling is more complex.
Geometrically, magnetic nanotubes (MNTs) are characterized by
their external and internal radii, R and r, respectively, and long-
itudinal length L. It is convenient to define the ratio β0≡r/R, so that
β0¼0 represents a solid cylinder (nanowire) and β0 close to
1 corresponds to a tube with very thin walls. Here we adopt a
simplified description of the MNTs, the limit of infinite long-
itudinal length, i.e. L-1, and β0¼1 corresponds to the magnetic
single-walled nanotubes [61–64]. The magnetic properties of sin-
gle-walled nanotubes can be very easily described by the well-
known Heisenberg model.

As far as we know, the physical picture of the spin wave dy-
namics in the magnetic single-walled nanotubes has not yet been
systematically investigated. In this work we study the quantized
spin wave modes in Heisenberg ferromagnetic/antiferromagnetic
single-walled nanotubes (HFM/HAFM-SWNTs) using the MBGFM
within the RPA. In Section 2 we present our model and put down
the Hamiltonian of HFM/HAFM-SWNTs. Then we briefly outline
the formulas of spontaneous magnetization, critical temperature
and spin wave dispersion relation derived by the MBGFM. In
Section 3, numerical computation is carried out and the role of
temperature, diameter of the tube, and wave vector on spin wave

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/physb

Physica B

http://dx.doi.org/10.1016/j.physb.2016.05.029
0921-4526/& 2016 Elsevier B.V. All rights reserved.

n Correspondence address: Department of Basic Curriculum, North China In-
stitute of Science and Technology, Beijing 101601, China.

E-mail address: mbzfjerry2008@126.com

Physica B 497 (2016) 23–30

www.sciencedirect.com/science/journal/09214526
www.elsevier.com/locate/physb
http://dx.doi.org/10.1016/j.physb.2016.05.029
http://dx.doi.org/10.1016/j.physb.2016.05.029
http://dx.doi.org/10.1016/j.physb.2016.05.029
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physb.2016.05.029&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physb.2016.05.029&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physb.2016.05.029&domain=pdf
mailto:mbzfjerry2008@126.com
http://dx.doi.org/10.1016/j.physb.2016.05.029


energy spectrum and energy level splitting are carefully analyzed.
At last, Section 4 summarizes the main results.

2. Model and formulas

We consider a HFM/HAFM-SWNTs of zigzag type [61,62]. In
this model, the spins, localized on the sites of a centered quadratic
lattice wall, were assumed to interact via a Heisenberg exchange
coupling limited to nearest neighbor (nn) sites. The distance be-
tween the nn sites is a. The centered quadratic lattice has to be
divided into two sublattices and the lattice constant should be

=b a2 . Moreover, a single-ion anisotropy was assumed to favor
the nanotube axis. According to the Mermin–Wagner theorem
[65], for one- or two-dimensional (2D) isotropic Heisenberg
magnetic systems, there is no spontaneous magnetization at finite
temperatures. However, the spontaneous magnetization can occur
when a single-ion anisotropy is introduced no matter how small it
is [66,67]. It was indeed possible for the single-ion anisotropy to
appear in real nanotube materials [68–70]. Some nanotube mate-
rials exhibit obvious magnetic anisotropy, and the easy axis is
parallel to the nanotube axis.

The Hamiltonian of the HFM/HAFM-SWNTs with two sublattice
is given as follows:

∑ ∑ ∑= − ⋅ − ( ) − ( ) ( )[ ]
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z
j j
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In Eq. (1), the first term represents the Heisenberg FM ex-
change energy (J40) or AFM exchange energy (Jo0), with ex-
change parameter J. The subscripts 1i and 2j denote the sublattice
1 and 2 sites, respectively, and [1i, 2j] mean that the nn exchanges
are involved. The second and the third term describe the single-
ion anisotropy of sublattice 1 and 2, respectively, which causes the
uniaxial anisotropy of the system and thus is responsible for ap-
pearance of spontaneous magnetization. Note that z-axis labels the
directions of tube axis. The anisotropy strength of D is usually
believed to be less than the absolute value of J by two orders of
magnitude. In this paper, we set Boltzman constant kB¼1. In cal-
culation, we fix |J|¼100, D¼1, and all parameters are taken as
dimensionless quantities. There are N and m sites along the axis
and circumference of the tube for each sublattice, respectively.

The MBGFM is a powerful means [71–76] to deal with magnetic
systems [77–83] since this method takes into account the spin
fluctuation, and is valid in the whole temperature range. Fur-
thermore, the MBGFM gives good agreement with quantumMonte
Carlo simulations in a wide temperature range of the ordered
phase [75]. In order to study spin waves of the HFM/HAFM-SWNTs,
we introduce the retarded Green's function

θ( − ′) = = − ( − ′) − ( )A B A B BAG t t i t t; , 2
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where the operators A and B are actually operator vectors in the
following form:
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and u is a parameter. Here the Green's function is in fact an 2�2
matrix, and its Fourier component is denoted as ω( )g . The higher
order Green's function appearing in the equation of motion is
decoupled by the RPA. As for the term concerning single-ion ani-
sotropy term in Eq. (1), we adopt the Anderson and Callen's (ACs)
decoupling [73,74]. The application of the equation of motion of
Green's function leads to a linear equations

ω − = ( )−
⎡⎣ ⎤⎦I P g F , 41

where I is the unit vector, and F�1 is the commutator matrix of
operators defined: =− ⎡⎣ ⎤⎦F A B, .1 The Hamiltonian matrix P is the
following:
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The perimeter of the tube is mb, and the radius R of the tube is
determined by 2πR¼mb. Hereafter we simply refer m as the dia-
meter. In the Eq. (7), the quantity p is the wave vector along the
tube axis z direction that takes the values within the first Brillouin
zone (FBZ). The value of q is determined by

π= ( = − ) ( )q
n

mb
n m

2
, 0, 1, 2, ... , 1 . 9

As m tends to infinity, the nanotube tends to be a 2D mono-
layer, and all the physical quantities will tend to those of a 2D
monolayer [62]. In this sense we can regard p and q in ω ( )τ p q, as
two components of a wave vector k:k ¼ (p,q). One only needs to
keep in mind that one of the vector components, q, takes the va-
lues determined by Eq. (9).

Note that we use μ〈 〉 ( = )μS , 1, 2z to denote the magnetization of
the sublattice 1 and 2, and S to denote spin nominal value. For the
FM lattice, the exchange parameter J is positive, 〈 〉 = 〈 〉 = 〈 〉S S S .z z z

1 2
For the AFM lattice, the exchange parameter J is negative, and
when the external field is absent, 〈 〉 = − 〈 〉 = 〈 〉S S S .z z z

1 2 The Ha-
miltonian matrix P eigenvalues ω τ( ) =τ p q, , 1, 2 can be solved,
which are just the spin wave elementary excitations spectra (EES)
of the system. Since the lattice is divided into two sublattices,
there are two branches of dispersion relationships. For the HFM-
SWNTs,

ω
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For the HAFM-SWNTs,
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Following the Callen's method proposed in Ref. [71], the sub-
lattice magnetization of arbitrary S is expressed [75,76] as follows,
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The eigenvector matrix U and its inverse U�1 of P can be
solved, and β = T1/ , the inverse of temperature.

The RPA solution of the MBGFM [75] obeys the Mermin–
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