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a b s t r a c t

Usually, charge and spin transport properties in tunnel junctions are studied in the DC bias regime and/or
in the adiabatic regime of time-varying magnetic fields. In this letter, the temporal dynamics of charge
and spin currents in a tunnel junction induced by pulsed magnetic fields is considered. At low bias
voltages, energy and momentum of the conduction electrons are nearly conserved in the tunneling
process, leading to the description of the junction as a spin-1/2 fermionic system coupled to time-varying
magnetic fields. Under the influence of pulsed magnetic fields, charge and spin current can flow across
the tunnel junction, displaying oscillatory behavior, even in the absence of DC bias voltage. A type of spin
capacitance function, in close analogy to electric capacitance, is predicted.

& 2016 Elsevier B.V. All rights reserved.

The phenomenon of tunneling is one of the most remarkable
features of quantum mechanics [1–4], awakening enormous in-
terest from both scientific and technological perspectives [5–14].
For instance, it has been used in the electronics industry to build
high speed devices, such as tunnel diodes and magnetic tunnel
junctions (MTJ) [15–25]. A typical tunnel junction consists of two
particle reservoirs (metallic, superconducting or semiconducting
electrodes) separated by a potential barrier region, which is clas-
sically forbidden. Quantum mechanically, however, the particles
wavefunctions are evanescent but non-vanishing inside the bar-
rier, leading to a non-zero probability for a particle to traverse the
barrier region, provided that the its energy height and spatial
thickness are sufficiently small. In an MTJ the so-called tunneling
magnetoresistance (TMR) is one or two orders of magnitude larger
than the anisotropic MR in materials, leading to immediate ap-
plications in hard disks as magnetic reading heads. The time scales
associated with electron's spin dynamics in ferromagnetic elec-
trodes composing a MTJ are usually in the picosecond range,
which is a few orders of magnitude smaller than the time scales
related to the temporal variation of the magnetic fields applied to
one or both sides of the MTJ in reading head applications. None-
theless, a more complete knowledge of the spin dynamics in non-
adiabatic regimes is of primary importance for the development of
novel devices in spintronics, in which the spin currents will play

the principal role [26–30]. The adequate techniques to inject,
pump and control spin currents are not fully understood, in
comparison with the manipulation of electric currents in semi-
conductor devices.

Considering the present context, it is our aim to investigate the
quantum dynamics of charge and spin transport in a tunnel
junction at low bias voltages, under the influence of pulsed mag-
netic fields applied to one of the sides the junction. The geometry
of the proposed nanostructure is illustrated in Fig. 1. Two mag-
netizable electrodes are separated by a non-magnetic insulating
barrier. The left and right electrodes are subjected to constant
transverse magnetic fields, which can be set ut to be in parallel or
anti-parallel configurations, while at the left side magnetic pulses
can be injected. As will be shown, electric and spin currents set up
even in the absence of a DC bias voltage, induced by the time-
varying magnetic pulses, which unbalance the spin populations of
both sides of the tunnel junction near the Fermi level, leading to
an effective particle flow across the potential barrier in order to
establish a dynamical equilibrium.

As the starting point, consider the simplest form of the tunnel

junction hamiltonian, ^ = ^ + ^ + ^H H H HL R T , given in second quantized
form:
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where ^ ( ^ )H HL R is the hamiltonian of the left(right) side of the

barrier and ĤT is the transfer hamiltonian, responsible for the
transport of particles across the junction, ( )σ σ

†a ap p, , is the annihi-
lation (creation) fermionic operator for an electron of energy σE L

p, ,
momentum p and spin projection σ = ↑ ↓, respective to the z-axis
at the left electrode (L), ( )σ σ

†b bp p, , stands for the annihilation
(creation) operators at the right side electrode (R), Δ Δ( )L R re-
presents the energy due to the Zeeman coupling with a magnetic
field perpendicular to the z-axis at the left(right) electrode, mixing
the up and down spin projections, while γσ is the effective tun-
neling amplitude for electrons with spin s flowing across the
tunnel junction. At low bias the relevant physics occurs in the
neighborhood of the Fermi level and we can safely assume that the
hopping parameter is independent of energy and momentum, but
can depend on the spin projection. Also, the transport processes
with spin-flip are being neglected, since it is typically one or two
orders or magnitude smaller than the spin-conserving tunneling.

The electric and spin current operators, Îe and Îs, respectively, are
defined in the following way:
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where σ =+ ( − )1 1 corresponds to the up(down) spin projection.
Notice that the charge and spin-polarized currents are being
measured in the same physical units, for the sake of comparison.

In order to study charge and spin dynamics induced by Zeeman
coupling of the electronic spins to external magnetic fields it is
convenient to consider transport at very low DC bias voltage, such
that the energies of tunneling electrons are around the Fermi le-
vels and can be written approximately as σμ≈ + ( )σ

α α αE E B tF B zp, ,
where α = L R, denotes the electrode, EF

α is the Fermi level of the
electrode α and ( )αB tz is the applied magnetic field at the electrode
α, μB is the Bohr magneton. As a consequence, linear momentum
of tunneling particles is nearly conserved, i.e., ≈p q in Eqs. (3)–(5),
which decouples the spin from the momentum degrees of free-
dom, leading to the description of a collection of spin 1/2 systems.
The sums over momentum quantum numbers, p and q, in Eqs.
(4) and (5), for the charge and spin currents, respectively, can be

replaced by the product of number of states calculated at the
Fermi levels of both sides of the junction, i.e., ∑ → σ σD DL R

p q, . Going
further, we drop out momentum quantum numbers from the
operators and write down Nambu spinors:
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allowing us to rewrite the tunnel junction hamiltonian as follows:

ψ ψ^ = ^ ( ^ + ^ ) ^ ( )†H , 70

where ^
0 and ^ are ×4 4 matrices defined below:
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In the above expressions αH0, αV and HT are ×2 2 matrices, ex-
plicitly given below:

μ σ= − ( ) ( )α α αE B tH 1 , 10F B z z0

Δ σ Δ σ= + ( )α α αV , 11x x y y

γ λσ= + ( )H 1 , 12T z

σ σ σ( ), ,x y z are the Pauli spin matrices, α = L R, denotes the elec-
trode, Δ Δ Δ= −α

α αix y , γ γ γ= ( + )↑ ↓ /2 is the average tunneling am-
plitude, λ γ γ= ( − )↑ ↓ /2 is the difference of the tunneling amplitude
for up and down spins. Making use of one more definition:
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where σ
αD is the number of states of spin s at the electrode α, we

can recast the charge and spin current operators into matrix form,
as follows:
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Analytical expressions can be obtained using perturbation theory
for some particular situations, but they awkwardly fail to predict
the correct quantum behavior at long time scales. Therefore, the
problem is solved numerically, taking as a first step the calculation

of the evolution operator ^ ( )U t , which obeys the Schrödinger
equation:

∂ ^

∂
= ^ ^

( )i
U
t

HU. 16

Next, the density matrix is calculated directly as ρ ρ^ ( ) = ^ ^ ^†
t U U0 ,

being ρ̂ = β− ^
e Z/H

0 the initial condition in the canonical ensemble,

Fig. 1. Geometry of the magnetic tunnel junction to be studied here.
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