Spin-orbit interactions in free lanthanide (3+) ions

Dimitar N. Petrov.*
Department of Physical Chemistry, Plovdiv University "Paisii Hilendarski", 24, Tsar Asen Str., 4000 Plovdiv, Bulgaria

ARTICLE INFO

Article history:

Received 18 March 2016
Received in revised form
18 April 2016
Accepted 20 April 2016
Available online 21 April 2016
Keywords:
Radial integrals
Spin-orbit interaction
Mean inverse-cube radii
Lanthanides

Abstract

The effective nuclear charges of free Ln^{3+} ions (Ln IV in spectroscopic notation) with $\mathrm{Ln}=\mathrm{Pr}, \mathrm{Nd}, \mathrm{Er}, \mathrm{Tm}$, and Yb , have been determined semiempirically from the dependence between calculated or empirical expectation values $\left\langle r^{-3}\right\rangle_{4 \mathrm{f}}$ and spin-orbit radial integrals $\zeta_{4 \mathrm{f}}$ known from experimental free-ion spectra. The variation with $\left\langle r^{-3}\right\rangle_{4 \mathrm{f}}$ of the matrix elements of spin-orbit interactions for the ground levels of the same free ions has been also discussed.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The spin-orbit interactions (SOIs) in lanthanides lead, in the absence of external field, to coupling of L and S angular momenta into J. For most of the Ln^{3+} ions, except for Sm^{3+} and $\mathrm{Eu}^{3+}, J=L \mp S$ is a good quantum number and designates a strong $L S$ coupling. For the ground levels, $|L-S|$ pertains to the first half, while $L+S$ is applicable for the second half of the lanthanide series; the signs of the SOIs are positive for the former and negative for the latter [1]. This coupling removes partially the degeneracy of the terms $2 S+1 L$ producing multiplets of levels $2 S+1 L J$. SOIs are considerable in values and dominate over the other intra-atomic magnetic interactions of the 4 f electrons in Ln^{3+} ions but remain much lower than the electrostatic interactions. On the other side, the multiplet splittings arising from SOIs in lanthanides are larger than the crystal field splittings [2]. The spin-orbit radial integral $\zeta 4 \mathrm{f}$ is a constant for the $2 S+1 \mathrm{LJ}$ levels of a $4 \mathrm{f}^{N}$ configuration and depends on the radial 4 f wave function and the central field potential [2-7]. The simultaneous effect of Coulombic and strong SOIs results in intermediate coupling, i.e. in different admixtures of the wave functions corresponding to the levels $2 S+1 L J$. Thus, the electrostatic and strong spin-orbit interactions provide an initial approximation to the experimental energy levels as well as adequate wave functions $[2,3]$.

The spin-orbit radial integral $\zeta_{4 \mathrm{f}}$ has been often applied in conjunction with the expectation value $\left\langle r^{-3}\right\rangle_{4 f}$; the calculation of the latter presents a continuous task [1] including, for example, $a b$ initio model potentials for the 4 f states of Ln^{3+} ions [8]. The

[^0]application of the mean inverse-cube radii for the 4 f electrons has been exemplified with the combined energy matrices of Pr^{3+} [9]. The same mean values have been also related to the magnetic hyperfine structure constant a_{J} and used in the determination of nuclear magnetic moments either in empirical relationships [2,10] or in operator equivalent form [9]. The electrons of an open $4 f^{N}$ configuration exert at the lanthanide nucleus hyperfine magnetic field estimated between 100 T and 800 T , higher than an external magnetic field [1]. The known values of $\left\langle r^{-3}\right\rangle_{4 \mathrm{f}}$ differ appreciably since they originate from different wave functions: relativistic [11,12], self-consistent field [13-15], and Hartree-Fock [16,17]. However, only one of these studies includes the entire lanthanide series [11].

The experimental values of $\zeta_{4 \mathrm{f}}$ have been obtained from optical spectra of Ln^{3+} ions in condensed phase. It has been generally assumed that the values of $\zeta_{4 f}$ have been affected to some extent by the other ions surrounding given Ln^{3+} ion. A survey on the optical properties of lanthanides in condensed phase has included the effective nuclear charge participating in the SOIs [3].

A number of recent studies, either $a b$ initio or fitting procedures, have also used the concept of SOIs for different purposes. Thus, an empirical relationship has been found relating $\zeta_{4 f}$ of Ln^{3+} to the effective nuclear charge $Z^{*}=Z-31.9$, where 31.9 is the $4 f$ screening constant, in a discussion concerning crystal field parameters of Ln^{3+} in crystals of $\mathrm{Cs}_{2} \mathrm{NaLnCl}_{6}$ [18]. The spin-orbit coupling constant for Pr^{3+} ion has been expressed depending on ligand polarizability of various ligands in a study of the nephelauxetic effect in the electronic spectra of Pr^{3+} [19]. A semiempirical atomic Hamiltonian with different number of varied parameters $(8,10$, or 12$)$ has been fitted for four ions with $4 f^{2}$ electron configuration, including Pr^{3+} [20]; for $\zeta_{4 f}$ of the same ion the authors have obtained values that are about 3% higher than
that one reported by Sugar [27]. Ab initio determinations of atomic parameters for crystals of $\mathrm{LaCl}_{3}: \mathrm{Ln}^{3+}$ have confirmed the hypothesis for smooth trends across the Ln^{3+} series [21]; it has been also shown that the obtained values of $\zeta_{4 \mathrm{f}}$ for the free ions Pr^{3+} and Nd^{3+} depend on the number of fitted parameters. HartreeFock values of the spin-orbit coupling constants for Ln^{3+} ions have been obtained with small deviations in respect to the experimental ones for the free ions Ln IV, namely: $\operatorname{Pr}^{3+}(+9.0 \%)$, $\mathrm{Nd}^{3+}(+5.4 \%), \mathrm{Er}^{3+}(+19.1 \%), \mathrm{Tm}^{3+}(+0.1 \%), \mathrm{Yb}^{3+}(-0.4 \%)$ [22]. Basic relationships in some major references have been re-examined in respect to the reduced matrix elements of the doubletensor operators $z_{\mathrm{r}}(r=1,2,3,4)$ of rank 2 in both the orbital and spin spaces; tables have been provided for f^{4} to f^{7} configurations [23]. Quite recently, the role of the SOIs has been exemplified in theoretical constructions of the energy level diagrams for $(2+)$, $(3+)$, and $(4+)$ - charged lanthanides with $4 f^{N}(N=1 \ldots 13)$ configurations [24].

The relationship between experimental radial integrals $\zeta_{4 \mathrm{f}}$ for the free ions Ln IV and the mean inverse-cube radii $\left\langle r^{-3}\right\rangle_{4 \mathrm{f}}$, however, has not been studied yet. The aim of the present work is to investigate the mentioned dependence for Ln IV ions and to exemplify certain matrix elements for ${ }^{2 S+1} L_{J}$ levels occurring in the free lanthanide ions.

2. Method

The spin-orbit radial integral $\zeta_{4 \mathrm{f}}$ is defined $[2-7,9]$ as:
$\zeta_{4 \mathrm{f}}=\hbar^{2} \int_{0}^{\infty} r^{2} R_{4 f}^{2}(r) \xi(r) d r$,
where
$\xi(r)=\frac{\hbar^{2}}{2 m^{2} c^{2} r} \frac{d U(r)}{d r}, U(r)=-e^{2} \frac{Z^{\text {eff }}}{r}$,
r is a radial coordinate of the electron, $U(r)$ is a central field potential with an effective nuclear charge $Z^{\text {eff }}$ exerted on the 4 f electrons in the SOIs, the other quantities have their usual meanings. The spin-orbit radial integral has been related to an empirical mean value $\left\langle r^{-3}\right\rangle_{4 f}[3-7,9]$:
$\zeta_{4 f}=\frac{\hbar^{2} e^{2}}{2 m^{2} c^{2}} Z^{\text {eff }}\left\langle r^{-3}\right\rangle_{4 \mathrm{f}}$.
It has been noted that the effective charges $Z^{f f f}$ relevant to the SOIs are different from those participating in the electrostatic interactions [6].

The matrix elements of the SOIs are independent of the quantum numbers M [23] and have been defined as products of $6 j$ symbols and doubly reduced matrix elements (DRME) $\boldsymbol{V}^{(11)}$ of the $4 f^{N}$ configuration by the expressions [2,25,26]:

$$
\begin{align*}
A= & \mathrm{f}^{N} \alpha L S J M|\mathbf{L} . \boldsymbol{S}| \mathrm{f}^{N} \alpha^{I} L^{I} S^{I} J^{I} M^{I} \\
= & \zeta_{4 \mathrm{f}}(-1)^{J+L+S^{I}}[l(l+1)(2 l+1)]^{1 / 2} \\
& \times\left\{\begin{array}{c}
L L^{I} 1 \\
S^{I} S J
\end{array}\right\} \times\left\langle\mathrm{f}^{N} \alpha L S\left\|V^{11}\right\| \mathrm{f}^{N} \alpha^{I} L^{I} S^{I}\right\rangle, \tag{4}
\end{align*}
$$

$$
\begin{equation*}
\left\langle\mathrm{f}^{1} 1 s\right|\left|V^{11}\right|\left|\mathrm{f}^{1} 1 s\right\rangle=(3 / 2)^{1 / 2} \tag{5}
\end{equation*}
$$

where α and α^{\prime} are unspecified quantum numbers, $l=3$ for 4 f electrons.

The almost closed electronic configurations $4 \mathrm{f}^{14-N}$, i.e. $4 \mathrm{f}^{11}(\mathrm{Er}$ IV), $4 \mathrm{f}^{12}$ (Tm IV), and $4 \mathrm{f}^{13}$ (Yb IV), are complementary of the less-than-half filled open shells $4 f^{N}: 4 f^{3}(N d I V), 4 f^{2}\left(\operatorname{Pr}\right.$ IV), and $4 f^{1}$ (Ce IV), respectively. Their matrix elements are interrelated by the following expression [26]:
$\left\langle\mathrm{f}^{14-N} v L S\right|\left|V^{11}\right| \mid \mathrm{f}^{\left.14-N^{I} L^{I} S^{I}\right\rangle=-(-1)\left[\left({ }^{\left.v-\nu^{I}\right)} / 2\right]+2{ }^{2} \mathrm{f}^{N} v L S| | V^{11}| | \mathrm{f}^{N} v^{I} L^{I} S^{I}\right\rangle, ~}$
where v and v^{\prime} designate seniority numbers. The signs of the matrix elements A depend also on those of the DRME $V^{(k 1)}$, i.e. for $V^{(11)}$ with $k+1=$ even, as follows [26]:

$$
\begin{align*}
& \left\langle\mathrm{f}^{14-N_{\alpha}} L S{ }_{\|} V^{11} \|\left.\right|^{N} \alpha^{I} L^{I} S^{I}\right\rangle \\
& =[(2 l+1-N) /(2 l+1-v)]\left\langle\left.\mathrm{f}^{N} \alpha L S\left\|V^{11}\right\|\right|^{N} \alpha^{I} L^{I} S^{I}\right\rangle \tag{7}
\end{align*}
$$

S is the total spin quantum number of the energy level ${ }^{2 S+1} L_{J}$ and $\left\langle\psi\left\|V^{(11)}\right\| \psi^{I}\right\rangle$ are DRME of the tensor operator $\boldsymbol{V}^{\left(k k^{\prime}\right)}$ between the wave functions ψ and ψ^{d}. The above expressions apply only to wave functions with the same spin, $S=S^{\prime}, \delta\left(S, S^{\prime}\right)=1$, so that the delta function is implicitly included in Eqs. (4), (6), (7). The DRME $V^{(11)}$ are available for all pairs of multiplets of $\mathrm{f}^{2}, \mathrm{f}^{3}$, and f^{4} [26]. The $6 j$-symbols in the present study have been determined according to the procedure described by Jucys and Bandzaitis [27].

The system of atomic units has been applied in this study, namely: $m=e=\hbar=1, c=137.036, a_{0}=\left(\hbar^{2} / m e^{2}\right)=0.52917721 \times 10^{-10} \mathrm{~m}, 1$ a.u. of energy is equal to $2 R_{\infty}=2 \times 109737.31 \mathrm{~cm}^{-1}$, where R_{∞} is the Rydberg constant [28]. The values of the spin-orbit radial integrals $\zeta_{4 \mathrm{f}}$ used here have been experimental ones for the free ions Ln IV [29-33].

3. Results and discussion

Constants of SOIs of Ln IV and expectation values $\left\langle r^{-3}\right\rangle_{4 \mathrm{f}}$ from computations, relativistic (R) [11] and Hartree-Fock (HF) [16], or empirical (emp.) [10], are listed in Table 1. The relativistic mean values have been included in this work for two reasons: (i) they are the only set covering the entire lanthanide series as far as Pr^{3+} has not been included in [12], (ii) the spin-orbit radial integrals $\zeta_{4 f}$ available in the literature from experimental free-ion spectra of Ln IV have been obtained with relativistic corrections. Obviously, the empirical values of $\left\langle r^{-3}\right\rangle_{4 \mathrm{f}}$ do not pertain to free ions Ln IV since

Table 1
Spin-orbit radial integrals $\zeta_{4 f}$, expectation values $\left\langle r^{-3}\right\rangle_{4 f}$, and effective nuclear charges $Z^{\text {eff }}$ for certain free Ln^{3+} ions with atomic number Z.

Ln IV	Z	$\zeta_{4 \mathrm{f}} / \mathrm{cm}^{-1}$ [Ref.]	$\left\langle r^{-3}\right\rangle_{4 \mathrm{f}}$ calc. $(R) / a_{0}{ }^{-3}[11]$	$\left\langle r^{-3}\right\rangle_{4 \mathrm{f}}$ calc.(HF)/ $/ a_{0}{ }^{-3}[17]$	$\left\langle r^{-3}\right\rangle_{4 \mathrm{f}} \mathrm{emp} . / a_{0}{ }^{-3}[9]$	$Z^{\text {eff }}$ calc.(R)	$Z^{\text {eff }}$ calc.(HF)	$Z^{\text {eff }}$ (emp.)
Pr IV	59	741 [29]	4.893	5.38	5.06	46	44	48
Nd IV	60	988 [30]	5.479	6.03	5.64	51	48	53
Er IV	68	2012 [31]	11.141	12.02	10.60	40	36	42
Tm IV	69	2640 [32]	11.990	12.88	11.72	46	44	49
Yb IV	70	2918 [33]	12.875	13.84	12.63	47	44	50

https://daneshyari.com/en/article/1808366

Download Persian Version:

https://daneshyari.com/article/1808366

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: petrov_d_n@abv.bg

