Contents lists available at ScienceDirect

Physica B

journal homepage: www.elsevier.com/locate/physb

Spin–orbit interactions in free lanthanide (3+) ions

Dimitar N. Petrov.*

Department of Physical Chemistry, Plovdiv University "Paisii Hilendarski", 24, Tsar Asen Str., 4000 Plovdiv, Bulgaria

ARTICLE INFO

Received 18 March 2016

Received in revised form

Accepted 20 April 2016

Available online 21 April 2016

Article history

18 April 2016

Keywords: Radial integrals Spin–orbit interaction Mean inverse-cube radii

Lanthanides

ABSTRACT

The effective nuclear charges of free Ln³⁺ ions (Ln IV in spectroscopic notation) with Ln=Pr, Nd, Er, Tm, and Yb, have been determined semiempirically from the dependence between calculated or empirical expectation values $\langle r^{-3} \rangle_{\rm 4f}$ and spin–orbit radial integrals $\zeta_{\rm 4f}$ known from experimental free-ion spectra. The variation with $\langle r^{-3} \rangle_{\rm 4f}$ of the matrix elements of spin–orbit interactions for the ground levels of the same free ions has been also discussed.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The spin-orbit interactions (SOIs) in lanthanides lead, in the absence of external field, to coupling of L and S angular momenta into J. For most of the Ln^{3+} ions, except for Sm^{3+} and Eu^{3+} , $J=L\mp S$ is a good quantum number and designates a strong LS coupling. For the ground levels, |L-S| pertains to the first half, while L+S is applicable for the second half of the lanthanide series; the signs of the SOIs are positive for the former and negative for the latter [1]. This coupling removes partially the degeneracy of the terms 2S+1L producing multiplets of levels 2S+1LI. SOIs are considerable in values and dominate over the other intra-atomic magnetic interactions of the 4f electrons in Ln³⁺ ions but remain much lower than the electrostatic interactions. On the other side, the multiplet splittings arising from SOIs in lanthanides are larger than the crystal field splittings [2]. The spin–orbit radial integral ζ 4f is a constant for the 2S + 1LJ levels of a $4f^N$ configuration and depends on the radial 4f wave function and the central field potential [2-7]. The simultaneous effect of Coulombic and strong SOIs results in intermediate coupling, i.e. in different admixtures of the wave functions corresponding to the levels 2S + 1LI. Thus, the electrostatic and strong spin-orbit interactions provide an initial approximation to the experimental energy levels as well as adequate wave functions [2,3].

The spin–orbit radial integral ζ_{4f} has been often applied in conjunction with the expectation value $\langle r^{-3} \rangle_{4f}$; the calculation of the latter presents a continuous task [1] including, for example, *ab initio* model potentials for the 4f states of Ln³⁺ ions [8]. The

application of the mean inverse-cube radii for the 4f electrons has been exemplified with the combined energy matrices of Pr^{3+} [9]. The same mean values have been also related to the magnetic hyperfine structure constant a_J and used in the determination of nuclear magnetic moments either in empirical relationships [2,10] or in operator equivalent form [9]. The electrons of an open $4f^N$ configuration exert at the lanthanide nucleus hyperfine magnetic field estimated between 100 T and 800 T, higher than an external magnetic field [1]. The known values of $\langle r^{-3} \rangle_{4f}$ differ appreciably since they originate from different wave functions: relativistic [11,12], self-consistent field [13–15], and Hartree–Fock [16,17]. However, only one of these studies includes the entire lanthanide series [11].

The experimental values of ζ_{4f} have been obtained from optical spectra of Ln^{3+} ions in condensed phase. It has been generally assumed that the values of ζ_{4f} have been affected to some extent by the other ions surrounding given Ln^{3+} ion. A survey on the optical properties of lanthanides in condensed phase has included the effective nuclear charge participating in the SOIs [3].

A number of recent studies, either *ab initio* or fitting procedures, have also used the concept of SOIs for different purposes. Thus, an empirical relationship has been found relating ζ_{4f} of Ln^{3+} to the effective nuclear charge $Z^* = Z-31.9$, where 31.9 is the 4f screening constant, in a discussion concerning crystal field parameters of Ln^{3+} in crystals of $Cs_2NaLnCl_6$ [18]. The spin–orbit coupling constant for Pr^{3+} ion has been expressed depending on ligand polarizability of various ligands in a study of the nephelauxetic effect in the electronic spectra of Pr^{3+} [19]. A semiempirical atomic Hamiltonian with different number of varied parameters (8, 10, or 12) has been fitted for four ions with $4f^2$ electron configuration, including Pr^{3+} [20]; for ζ_{4f} of the same ion the authors have obtained values that are about 3% higher than

^{*} Corresponding author.

E-mail address: petrov_d_n@abv.bg

http://dx.doi.org/10.1016/j.physb.2016.04.032 0921-4526/© 2016 Elsevier B.V. All rights reserved.

that one reported by Sugar [27]. Ab initio determinations of atomic parameters for crystals of LaCl₃:Ln³⁺ have confirmed the hypothesis for smooth trends across the Ln^{3+} series [21]; it has been also shown that the obtained values of ζ_{4f} for the free ions Pr^{3+} and Nd³⁺ depend on the number of fitted parameters. Hartree-Fock values of the spin–orbit coupling constants for Ln³⁺ ions have been obtained with small deviations in respect to the experimental ones for the free ions Ln IV, namely: $Pr^{3+}(+9.0\%)$, $Nd^{3+}(+5.4\%),\ Er^{3+}(+19.1\%),\ Tm^{3+}(+0.1\%),\ Yb^{3+}(-0.4\%)\ \cite{22}.$ Basic relationships in some major references have been re-examined in respect to the reduced matrix elements of the doubletensor operators z_r (r=1, 2, 3, 4) of rank 2 in both the orbital and spin spaces; tables have been provided for f⁴ to f⁷ configurations [23]. Quite recently, the role of the SOIs has been exemplified in theoretical constructions of the energy level diagrams for (2+), (3+), and (4+) – charged lanthanides with 4f^N (N=1...13) configurations [24].

The relationship between experimental radial integrals ζ_{4f} for the free ions Ln IV and the mean inverse-cube radii $\langle r^{-3} \rangle_{4f}$, however, has not been studied yet. The aim of the present work is to investigate the mentioned dependence for Ln IV ions and to exemplify certain matrix elements for ${}^{2S+1}L_J$ levels occurring in the free lanthanide ions.

2. Method

The spin–orbit radial integral ζ_{4f} is defined [2–7,9] as:

$$\zeta_{4f} = \hbar^2 \int_0^\infty r^2 R_{4f}^2(r) \xi(r) dr,$$
(1)

where

$$\xi(r) = \frac{\hbar^2}{2m^2 c^2 r} \frac{dU(r)}{dr}, \ U(r) = -e^2 \frac{Z^{eff}}{r},$$
(2)

r is a radial coordinate of the electron, U(r) is a central field potential with an effective nuclear charge Z^{eff} exerted on the 4f electrons in the SOIs, the other quantities have their usual meanings. The spin–orbit radial integral has been related to an empirical mean value $\langle r^{-3} \rangle_{4f}$ [3–7,9]:

$$\zeta_{4f} = \frac{\hbar^2 e^2}{2m^2 c^2} Z^{eff} \langle r^{-3} \rangle_{4f}.$$
 (3)

It has been noted that the effective charges Z^{eff} relevant to the SOIs are different from those participating in the electrostatic interactions [6].

The matrix elements of the SOIs are independent of the quantum numbers M [23] and have been defined as products of 6j-symbols and doubly reduced matrix elements (DRME) **V**⁽¹¹⁾ of the 4f ^{*N*} configuration by the expressions [2,25,26]:

$$A = f^{N} \alpha L S J M[\mathbf{L}, \mathbf{S}] f^{N} \alpha^{I} L^{I} S^{I} J^{I} M^{I}$$

$$= \zeta_{4f} (-1)^{J+L+S^{I}} [l(l+1)(2l+1)]^{1/2}$$

$$\times \left\{ L L^{I} 1 \\ S^{I} S J \right\} \times \langle f^{N} \alpha L S \parallel V^{11} \parallel f^{N} \alpha^{I} L^{I} S^{I} \rangle, \qquad (4)$$

$$\langle f^{1}1s || V^{11} || f^{1}1s \rangle = (3/2)^{1/2}$$
 (5)

where α and α' are unspecified quantum numbers, l=3 for 4f electrons.

The almost closed electronic configurations $4f^{14-N}$, i.e. $4f^{11}$ (Er IV), $4f^{12}$ (Tm IV), and $4f^{13}$ (Yb IV), are complementary of the lessthan-half filled open shells $4f^{N}$: $4f^{3}$ (Nd IV), $4f^{2}$ (Pr IV), and $4f^{1}$ (Ce IV), respectively. Their matrix elements are interrelated by the following expression [26]:

$$\langle f^{14-N}vLS || V^{11} || f^{14-N}v^{I}L^{I}S^{I} \rangle = -(-1)^{\left\lfloor \binom{v-v^{I}}{2} \right\rfloor + 2} \langle f^{N}vLS || V^{11} || f^{N}v^{I}L^{I}S^{I} \rangle, \quad (6)$$

where v and v' designate seniority numbers. The signs of the matrix elements *A* depend also on those of the DRME $V^{(k1)}$, i.e. for $V^{(11)}$ with k+1=even, as follows [26]:

$$\langle \mathbf{f}^{14-N} \alpha \, L \, S \, ||V^{11}|| \mathbf{f}^{N} \alpha^{l} \, L^{l} \, S^{l} \rangle$$

$$= \left[(2l+1-N)/(2l+1-v) \right] \langle \mathbf{f}^{N} \alpha \, L \, S \, ||V^{11}|| \mathbf{f}^{N} \alpha^{l} \, L^{l} \, S^{l} \rangle$$

$$(7)$$

S is the total spin quantum number of the energy level ${}^{2S+1}L_J$ and $\langle \psi \| V^{(11)} \| \psi^I \rangle$ are DRME of the tensor operator $V^{(kk')}$ between the wave functions ψ and ψ^I . The above expressions apply only to wave functions with the same spin, S=S', $\delta(S, S')=1$, so that the delta function is implicitly included in Eqs. (4), (6), (7). The DRME $V^{(11)}$ are available for all pairs of multiplets of f^2 , f^3 , and f^4 [26]. The 6*j*-symbols in the present study have been determined according to the procedure described by Jucys and Bandzaitis [27].

The system of atomic units has been applied in this study, namely: $m=e=\hbar=1$, c=137.036, $a_0=(\hbar^2/me^2)=0.52917721 \times 10^{-10}$ m, 1 a.u. of energy is equal to $2R_{\infty}=2 \times 109$ 737.31 cm⁻¹, where R_{∞} is the Rydberg constant [28]. The values of the spin–orbit radial integrals $\zeta_{\rm 4f}$ used here have been experimental ones for the free ions Ln IV [29–33].

3. Results and discussion

Constants of SOIs of Ln IV and expectation values $\langle r^{-3} \rangle_{4f}$ from computations, relativistic (*R*) [11] and Hartree–Fock (HF) [16], or empirical (emp.) [10], are listed in Table 1. The relativistic mean values have been included in this work for two reasons: (i) they are the only set covering the entire lanthanide series as far as Pr^{3+} has not been included in [12], (ii) the spin–orbit radial integrals ζ_{4f} available in the literature from experimental free-ion spectra of Ln IV have been obtained with relativistic corrections. Obviously, the empirical values of $\langle r^{-3} \rangle_{4f}$ do not pertain to free ions Ln IV since

Table 1

Spin–orbit radial integrals ζ_{4f_1} expectation values $\langle r^{-3} \rangle_{Af_1}$ and effective nuclear charges Z^{eff} for certain free Ln³⁺ ions with atomic number Z.

Ln IV	Ζ	ζ_{4f} /cm ⁻¹ [Ref.]	$\left\langle r^{-3}\right\rangle_{\mathrm{4f}}$ calc.(<i>R</i>)/ a_0^{-3} [11]	$\left< r^{-3} \right>_{ m 4f}$ calc.(HF)/ a_0^{-3} [17]	$\left< r^{-3} \right>_{ m 4f}$ emp./ a_0^{-3} [9]	Z ^{eff} calc.(R)	Z ^{eff} calc.(HF)	Z ^{eff} (emp.)
Pr IV	59	741 [29]	4.893	5.38	5.06	46	44	48
Nd IV	60	988 [30]	5.479	6.03	5.64	51	48	53
Er IV	68	2012 [31]	11.141	12.02	10.60	40	36	42
Tm IV	69	2640 [32]	11.990	12.88	11.72	46	44	49
Yb IV	70	2918 [33]	12.875	13.84	12.63	47	44	50

Download English Version:

https://daneshyari.com/en/article/1808366

Download Persian Version:

https://daneshyari.com/article/1808366

Daneshyari.com