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a b s t r a c t

Problems of obtaining Green's function and using it for studying the structure of scalar electromagnetic
fields in a sinusoidal superlattice are considered. An analytical solution of equation in the k-space for
Green's function is found. Green's function in the r-space is obtained by both the numerical and the
approximate analytical Fourier transformation of that solution. It is shown, that from the experimental
study of Green's function in the k-space the position of the plane radiation source relative to the ex-
tremes of the dielectric permittivity ε ( )z can be determined. The relief map of Green's function in the r-
space shows that the structure of the field takes the form of chains of islets in the plane ωz , the number
of which increases with increasing the distance from a radiation source. This effect leads to different
frequency dependences of Green's function at different distances from the radiation source and can be
used to measure the distance to the internal source. The real component of Green's function and its
spatial decay in the forbidden zones in the near field is investigated. The local density of states, de-
pending on the position of the source in the superlattice, is calculated.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Photonic crystals, which are artificially created media with
periodic physical parameters, has recently been widely studied
(see, e.g., Refs. [1–6]). Knowledge of analytical expressions for
Green's function of waves propagating in such media, is necessary
when considering a number of problems, both theory and ex-
periment. Green's function in the coordinate space ω( )G r r, , 0 is
used as in dealing with problems related to the structure of wave
fields in periodic media and computing the most important
characteristics such as the local density of states (LDOS) [7–10].
Green's function in the wave vector space ω( )G k r, , 0 is needed in
the study of various aspects of theory, for example, the theory of
wave scattering by inhomogeneities [11,12]. The wave equation for
Green's function in one-dimensional superlattice, periodic along
the z-axis, is reduced to a one-dimensional equation by the Fourier
transformation in the ξ = −x x0 and ζ = −y y0 coordinates. This
work is devoted to finding and investigating Green's functions for
the scalar model of electromagnetic waves in one-dimensional
superlattice with a sinusoidal profile of modulation of the di-
electric permittivity ε ( )z . Real photonic crystals typically have a
modulation profile ε ( )z , nearly rectangular. A number of physical
phenomena occurring in the propagation of waves in periodic

media, are very sensitive to the shape of the profile of ε ( )z .
However, a number of phenomena, including the fundamental
nature, are qualitatively similar for all periodic profiles of ε ( )z . The
sinusoidal modulation of ε ( )z is the most suitable for the analytical
study of such phenomena. A homogeneous equation for a sinu-
soidal superlattice (Mathieu equation) is well studied (see, e.g.,
Ref. [13]). Green's function of waves in this superlattice is much
less studied. In Refs. [14–18], approximate expressions for Green's
function in the coordinate space ω( )G r r, , 0 have been found and
studied.

The objectives of this paper are: (i) obtaining an analytical re-
presentation of Green's function in k-space ω( )G k r, , 0 for scalar
waves in the one-dimensional sinusoidal superlattice; (ii) the
numerical and approximate analytical representation of this
function in the r-space ω( )G r r, , 0 ; (iii) investigation of the struc-
ture of the scalar fields of the plane radiation source using both
forms of Green's function, ω( )G k r, , 0 and ω( )G r r, , 0 .

2. Solution of Green's function equation

Green's function of scalar model of electromagnetic waves in a
sinusoidal superlattice satisfies the equation

ν η ψ δ∇ ( ) + + ( + ) ( ) = − ( − ) ( )⎡⎣ ⎤⎦G qz Gr r r r r r, 2 cos , , 12
0 0 0

where ν ε ω= ( )c/ 2, η ε ω= Δ ( )c2 / 2, π=q l2 / ; ω and c are the
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frequency and the speed of light in vacuum, respectively; ε and εΔ ,
respectively, are the mean value and the amplitude of modulation
of a dielectric permittivity, l and ψ are the spatial period and the
phase of the superlattice, respectively. Here and below, we do not
indicate explicitly the dependence of Green's functions on the
frequency if it does not lead to misunderstandings. In addition to
Eq. (1), Green's function must satisfy the standard conditions of
radiation. Equations for scalar models of elastic and spin waves
differ renaming parameters.

Since the medium is periodically inhomogeneous along the
superlattice z-axis, Green's function depends not only on the dif-
ference −z z0, and the z-coordinate directly. In the xy plane,
Green's function depends only on the difference of the corre-
sponding coordinates, that allows us to carry out the two-di-
mensional Fourier transformation in the transverse coordinates
ξ = −x x0 and ζ = −y y0:

∫ ξ ζ( ) = ( ) ( + ) ( )ξ ζ ξ ζ⊥ ⎡⎣ ⎤⎦G G z z i k k dk dkr r k, , , exp . 20 0

The result is a one-dimensional equation in the form

η ψ

π
δ

( ) + ϰ + ( + ) ( )

= −
( )

( − )
( )

⊥ ⊥⎡⎣ ⎤⎦d
dz

G z z qz G z z

z z

k k, , 2 cos , ,

1
2

,
3

2

2 0 0

2 0

where νϰ = − ⊥k2 and = +ξ ζ⊥ k kk i j is a two-dimensional wave
vector. Eq. (3) was used in Refs. [16,18], where the approximate
expressions for Green's function in some limiting cases had been
obtained. In those studies, Eq. (3) was investigated in the co-
ordinate z-space. In that case, the solution of Eq. (3) was expressed
in terms of independent solutions of the corresponding homo-
geneous equation [13]. These cumbersome expressions are not
always convenient both in analytical and numerical calculations.

In this paper, we develop another method for studying the
solution of Eq. (3), which we briefly have described previously
[19]. First, we find the analytical solution of Eq. (3) in kz-space, and
then examine it numerically and analytically in r-space. Applying
the Fourier transformation to Eq. (3)

∫ ∫ ( )π
( ) = ( ) ( ) ( ) = ( ) ( − ) 4G z G k ik z dk G k G z ik z dexp ,

1
2

exp ,z z z z z z

we obtain
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To find the solution of Eq. (5), we use the methods of analysis of
systems of matrix equations [20,21]. Doing the corresponding
operations (see Appendix A), we obtain Green's function in k-
space in a compact expression containing the ascending and or-
dinary continued fractions

π
( ) = − ( − )

( )
+ +

( )⊥

+ −
G k z

ik z P P
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k , ,
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2
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.
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0
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Here ±P1 are ascending continued fractions, determined by the
recursive formula
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and L0 and ±Ln are ordinary continued fractions defined by the
formulas
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Continued fractions in Eq. (6) have fast convergence, so that ex-
pression is useful in the study of Green's function in k-space and
in the r-space. In some cases it is convenient to use also the ex-
pansion of Green's function in a Fourier series, which has the form

∑( ) = − ( − )
( )

⊥
=−∞

∞
⎡⎣ ⎤⎦G k z g i k nq zk , , exp .

9
z

n

n
zk0 0

Here the factors gn
k are determined by the expression

π
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where continued fractions designated by slash characters.

3. Field structures of a plane radiation source

In what follows, all graphs of Green's functions correspond to
the plane radiation source located in the plane xy. Green's function
of the source in the z-space defined by the equation

∫ ∫( ) = ( ) ( )G z z G dx dyr r, , . 110 0 0 0

Substituting Eq. (2) into Eq. (11) and integrating over x0 and y0, we
obtain

∫ ∫π δ δ
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It follows that Green's functions of a plane source ( )G k z,z 0 and
( )G z z, 0 related to the general expression for the spectral form of

Green's function, Eq. (6), by the following relations:

π( ) = ( ) ( ) ( )⊥ =⊥G k z G k zk, 2 , , , 13z z k0
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Examples of relief maps of the imaginary part of Green's
function ω″( )G k, z in kz-space calculated by Eqs. (6) and (13) are
shown in Fig. 1 for the three phase values: ψ = 0 (a), π/2 (b), and π
(c). For the expressiveness of maps, the dimensionless factor ω ω/ r

is added to the normalization of Green's functions, where ωr

corresponds to the middle frequency of the first forbidden Bril-
louin zone of the superlattice. Without such a leveling factor, the
amplitudes of the relief in the high-Brillouin zones are too small.
In the calculations, it is assumed that the source coordinate =z 00

and the location of the source relative to the superlattice is gov-
erned by the spatial phase of the superlattice ψ. Phase ψ = 0
corresponds to the source position in one of the maxima of the
function qzcos , i.e., in a center of the layer with a large value of ε,
the phase ψ π= /2 corresponds to the source position at the
boundary between the layers, and the phase ψ π= corresponds to
the source position in a center of the layer with a lower value of ε
(see the image of a superlattice in the bottom of Fig. 2). In the color
version of Fig. 1, available online, one can see that the phase
change leads to radical restructuring the relief of the function

ω″( )G k, z . At the sites of some positive for ψ = 0 peaks of this
function, the negative peaks occur at ψ π= , the character of the
sequence of peak sights changes as along the kz coordinate, and
along the ω coordinate. Especially peculiar pattern corresponds to
the phase ψ π= /2, when instead of peaks the curves having both
positive and negative components occur.

The spatial structure of the electromagnetic field in the su-
perlattice along the z-axis describes by Green's function ω( )G z, .
This function is determined by the Fourier transformation in the

V.A. Ignatchenko, D.S. Tsikalov / Physica B 485 (2016) 94–102 95



Download English Version:

https://daneshyari.com/en/article/1808422

Download Persian Version:

https://daneshyari.com/article/1808422

Daneshyari.com

https://daneshyari.com/en/article/1808422
https://daneshyari.com/article/1808422
https://daneshyari.com

