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of science and technology.

High frequency conductivity of hot electrons in undoped single walled achiral Carbon Nanotubes (CNTs)
under the influence of ac-dc driven fields was considered. We investigated semi-classically Boltzmann's
transport equation with and without the presence of the hot electrons’ source by deriving the current
densities in CNTs. Plots of the normalized current density versus frequency of ac-field revealed an in-
crease in both the minimum and maximum peaks of normalized current density at lower frequencies as
a result of a strong injection of hot electrons. The applied ac-field plays a twofold role of suppressing the
space-charge instability in CNTs and simultaneously pumping an energy for lower frequency generation
and amplification of THz radiations. These have enormous promising applications in very different areas

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Carbon Nanotubes (CNTs) [1-3] have been the subject of in-
tense research [4-18] since its discovery in 1991 by the Japanese
scientist Sumio lijima. Their unique structures, fascinating elec-
tronic, magnetic and transport properties have sparked the inter-
est and imagination of researchers worldwide [19]. These quasi-
one-dimensional nanostructural materials have a wide variety of
possible applications [20-22]. Research in hot electrons, like any
field in semiconductor research, has received a great deal of at-
tention since the arrival of the transistor in 1947 [23]. Recently, it
has become possible to fabricate semiconductor devices with sub-
micron dimensions. The miniaturization of devices has led to the
generation of high fields well outside the linear response region,
where Ohm's law holds for any reasonable voltage signal [24]. The
physical understanding of the microscopic processes which un-
derlie the operations of such devices at high electric fields is
provided by research into hot electron phenomena [25]. Whereas,
there are several reports on hot electrons generation in CNTs [26-
29], the reports on high frequency conductivity of hot electrons in
CNTs are limited. Thus, in this paper, we present theoretical fra-
mework investigations of high frequency conductivity of hot
electrons in (3,0) zigzag (zz) and (3,3) armchair (ac) CNTs. The
Boltzmann transport equation is solved in the framework of mo-
mentum-independent relaxation time using the semi-classical
approach to obtain current density for each achiral CNT. We probe
the behaviour of the electric current density of the CNTs as a
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function of the frequency of ac field with and without the axial
injection of the hot electrons.

2. Theory

When a d.c. field E, is applied along a z-axis of an undoped
single-wall carbon nanotube, electrons begin to move in ac-
cordance with the semiclassical Newton's law (neglecting scat-
tering) [30] as

dp, _
a = )

where P, and e are the axial component of the quasi-momentum
and the electronic charge of the propagating electrons respec-
tively. For CNTs, if energy level spacing Ae (Ae = zAVg[L, 7 = h|2z, h
is Planck constant, Vg is Fermi velocity and L is the length of the
nanotube) is large enough and the scattering rate v is small such
that Ae»aeE, and hv < aeE, (zz-CNT), and Ae»%aEz hv < V%aEZ,
(ac-CNT), then the electrons oscillate inside the lower level with
the so-called Bloch frequency @ given by [31]
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for zz-CNT and ac-CNT respectively. Here, a is the lattice constant
of the CNT. The investigation is done within the semi-classical
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approximation in which the motion of the m-electrons is con-
sidered as classical motion of free quasi-particles in the field of the
crystalline lattice with dispersion law extracted from the quantum
theory. Taking into account the hexagonal crystalline structure of a
rolled graphene in a form of CNTs and using the tight binding
approximation, the energies for zz-CNT and ac-CNT are expressed
as in Egs. (4) and (5), respectively [32]
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where y, ~ 3.0 eV is the overlapping integral, p; is the axial com-
ponent of quasi-momentum. Ap, is transverse quasi-momentum
level spacing and s is an integer. The expression for lattice constant
a in Egs. (4) and (5) is given by

a= V3
2nh 10

where ac_¢) =0.142 nm is the C-C bond length. The — and +
signs correspond to the valence and conduction bands respec-
tively. Due to the transverse quantization of the quasi-momentum
P, its transverse component p, can take n discrete values,
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Unlike transverse quasi-momentum, p,, the axial quasi-mo-
mentum ¢, is assumed to vary continuously within the range
0 < p, < 2z/a, which corresponds to the model of infinitely long
CNT ( L = o). This model is applicable to the case under con-
sideration because we are restricted to temperatures and voltages
well above the level spacing [32], ie. ksT > ¢, Ae, where k; is
Boltzmann constant, T is the temperature, €. is the charging en-
ergy. The energy expression in Egs. (4) and (5) can be expressed in
the Fourier series as
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where &, is given as

2n

a a .
— fo “ &5(p,) exp( — irap,) dp,

Ers = 27[}/0 (13)

The quasi-classical velocity of an electron moving along the CNTs
axis is given by the expression v;(p,, SAp,) = ders(p,)/dp,. Sub-
stituting Eq. (9) into the velocity equation and expressing further
give
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Considering the presence of hot electrons source, the motion of
quasi-particles in an external axial electric field is described by the
Boltzmann kinetic equation in the form as shown below [30,31]
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where S(p) is the hot electron source function, f;(p) is equilibrium
Fermi distribution function, f (p, t) is the distribution function, v,
is the quasi-particle group velocity along the z-axis of CNTs and 7
is the relaxation time. The relaxation term of Eq. (11) describes the
electron-phonon scattering, electron-electron collisions [31,32]
etc. Using the method originally developed in the theory of
quantum semiconductor superlattices [31], an exact solution of Eq.
(11) can be constructed without assuming a weak electric field.
Expanding the distribution functions of interest in Fourier series
we obtain for ac-CNTs
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for zz-CNTs
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for ac-CNTs where b = a//3 or a = b/\/3, 5(p, — sAp,) is the Dirac-
delta function, f;, is the coefficients of the Fourier series and y, (t)
is the factor by which the Fourier transform of the non-equili-
brium distribution function differs from its equilibrium distribu-
tion counterpart. The expression for f,s can be expanded in the
analogous form as
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The electron surface current density j, along the CNTs axis is also
given by the expression
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the integration is carried over the first Brillouin zone. For simpli-
city, we consider a hot electron source of the simplest form given
by the expression,
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where f (p) is the stationary (static and homogeneous) solution of
Eq. (23), Qis the injection rate of hot electron, ng is the equilibrium
particle density, ¢ and ¢ are the dimensionless momenta of
electrons and hot electrons respectively which are expressed as
¢, =ap,/h and ¢, = ap,[n for zz-CNTs and ¢, = ap,/~3# and
&= ap,| J3n for ac-CNTs. We now find the high frequency con-
ductivity of hot electrons in the non-equilibrium state for zz-CNT
by considering perturbations with frequency @ and wave-vector k
of the form

E(t) =E;, + E, r exp( — iwt + ikx) 23)



Download English Version:

https://daneshyari.com/en/article/1808443

Download Persian Version:

https://daneshyari.com/article/1808443

Daneshyari.com


https://daneshyari.com/en/article/1808443
https://daneshyari.com/article/1808443
https://daneshyari.com/

