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a b s t r a c t

Inelastic low-energy Raman and high-energy X-ray scatterings have made great progress in in-
strumentation to investigate the strong electronic correlations in matter. However, theoretical study of
the relevant scattering spectrum is still a challenge. In this paper, we present a Schwinger–Keldysh ca-
nonical perturbation formalism for the electronic Raman scattering, where all the resonant, non-re-
sonant and mixed responses are considered uniformly. We show how to use this formalism to evaluate
the cross section of the electronic Raman scattering off an one-band superconductor. All the two-photon
scattering processes from electrons, the non-resonant charge density response, the elastic Rayleigh
scattering, the fluorescence, the intrinsic energy-shift Raman scattering and the mixed response, are
included. In the mean-field superconducting state, Cooper pairs contribute only to the non-resonant
response. All the other responses are dominated by the single-particle excitations and are strongly
suppressed due to the opening of the superconducting gap. Our formalism for the electronic Raman
scattering can be easily extended to study the high-energy resonant inelastic X-ray scattering.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Inelastic low-energy Raman and high-energy X-ray scatterings
have become powerful tools to study the strong electronic corre-
lations in matter [1–3]. While the instrumental technique of the
light scattering is in rapid progress, the theoretical study of the
scattering spectrum is in less development. Two main difficulties
suppress the theoretical study of the light scattering off the
strongly correlated electrons. The first difficulty stems from the
complexity of the strongly correlated electrons themselves. We
now have no well-defined theoretical formalism for the various
electronic correlations in such as the high-Tc cuprates, iron-based
superconductors and heavy fermions, where the multiple com-
parable energy scales and different degrees of freedom are
strongly correlated. The other difficulty lies in the description of
the inelastic light scattering processes. Unlike the single-particle
scattering technique such as the angle-resolved photoemission
spectroscopy (ARPES) and neutron scattering, Raman and X-ray
scatterings involve two-step photon-in photon-out processes. The
cross section of the ARPES or neutron scattering is determined by
the scattering correlation function which can be studied in per-
turbation formalism by the fluctuation–dissipation theorem.
However, a simple extension of this formalism for the two-photon
scattering is fail because the fluctuation–dissipation theorem is

now invalid. We thus have no reliable perturbation formalism to
study the scattering correlation function in Raman and X-ray
scatterings.

In this paper, we focus our study on the second difficulty. We
show that it can be overcome by introducing the Schwinger–Kel-
dysh contour time formalism, which has been well established for
non-equilibrium physics [4–6]. In this paper, we present a
Schwinger–Keldysh perturbation formalism to evaluate the cross
section of the electronic Raman scattering. The formalism for the
high-energy resonant inelastic X-ray scattering (RIXS) can be es-
tablished in a similar procedure.

Our starting point is the differential cross section of the in-
elastic light scattering. Consider a two-step photon-in photon-out
scattering as shown schematically in Fig. 1. The incident photon
with momentum pi and polarization ei is absorbed by the elec-
trons of the target matter which then emits photon with mo-
mentum pf and polarization ef . Suppose the initial state of the
electrons is ϕ| 〉i at time ti and the final state after the scattering is
ϕ| 〉f at time tf. The scattering probability of this two-photon process
is described by

∑Γ Ψ Ψ( ) = 〈 |^ ( )| 〉
( )ϕ ϕ
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where ^ ( )S t t,f i is the time evolution matrix from an initial state
Ψ ϕ| 〉 ≡ | 〉p eI i i i into a final state Ψ ϕ| 〉 ≡ | 〉p eF f f f , and Ei is the energy of
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the electrons in the initial state. Suppose there are N photons in
the initial state | 〉p ei i . Among the N photons there are

Γ∑ ( )N p e p e;f f i ip ef f
photons scattered. The conservation of the

photons in the scattering process shows that

∑Φ σ Γ( ) Δ = ( )
( )

t Np e p e p e, ; ,
2

i i i f f i i
p ef f

where s is the effective scattering cross section,
Φ ( ) = =nc Nc Vp e, /i i i is the current density (or flux) of the in-
cident photons (V is volume of the photon field and c is the light
velocity), and Δ = −t t tf i. Since ω = p cf f , we have

∫π ω ω Ω∑ = ( )V c d d/ 2 f fp
3 2

f
where Ωd is the differential solid angle.

The double differential cross section with the initial and final
photon states | 〉p ei i and | 〉p ef f is given by
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where q and ν are the transferred momentum and energy fre-
quency, respectively, and are defined by

ν ω ω= − = − ( )q p p , . 4i f i f

Formula (3) shows that the differential cross section is propor-
tional to the scattering probability Γ. The time difference Δt can be
canceled by an additional factor Δt in Γ which comes from the
energy conservation law. Therefore Γ Δt/ can be taken as a scat-
tering rate.

Suppose the coupling of the electron and the photon field is VI.
Define the total Hamiltonian of the combined system as

= + +H H Vp I with H and Hp being the Hamiltonian of the

electron and the photon system respectively, Ŝ matrix is given by

∫^( ) = ( )
− ℏ ( )

S t t T e, , 5f i t
i dtV t/

ti

tf
I

where ( ) = ℏ( + )( − ) − ℏ( + )( − )V t e V eI
i H H t t

I
i H H t t/ /p i p i and Tt is the time or-

dering operator. Separate the interaction VI into V1 of linear to A
and V2 of quadratic to A, where A is the photon vector potential. To
lowest-order perturbations, only the following two expansions of

the Ŝ matrix contribute to the scattering probability Γ,

∑Γ Ψ Ψ= 〈 |^ + ^ | 〉
( )ϕ ϕ

β−e
Z

S S ,
6

E

F I1 2

2

i f

i

where Ŝ1,2 are defined by
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Thus the scattering probability Γ involves three contributions,
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Γ1, Γ2 and Γ12 are the so-called non-resonant, resonant and mixed
parts of the scattering probability, respectively. Γ12 describes
quantum interference of the resonant and non-resonant scattering
processes. The positive or negative Γ12 comes from the corre-
sponding constructive or destructive quantum interference.

Since the states of the incident and the scattered photons are
defined definitely, the scattering probability Γ can be reduced into

a representation of the pure electron system. Now Ŝ1,2 matrices
can be re-expressed in similar forms to Eq. (7) where the inter-
actions V1,2 are substituted by the reduced ones 1,2 without
photon field involved (details and derivation will be shown in the
following section).

The non-resonant scattering probability Γ1 is determined by
the correlation function as

∫Γ = 〈 ( ) ( )〉
( )

†dt dt t t ,
10t

t
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f

where 〈 〉 ≡ [ ]β−A Z e A1/ Tr H and ( ) = ℏ ( − ) − ℏ ( − )t e ei H t t i H t t/ /i i . With
the fluctuation–dissipation theorem, Γ1 can be re-expressed into
the standard form:

Γ χ ν= Δ
−

( ) ( )βν−
t

e
2

1
Im , 111

where χ ν( ) is the frequency Fourier transformation of the time-
ordered correlation function χ θ( ) = ( − )〈[ ( ) ( )]〉†t t i t t t t, ,1 2 1 2 2 1 2 2 .
Perturbation theory can then be easily introduced to evaluate Γ1.
This is a standard formalism to study the scattering probability in
the single-particle scattering technique such as ARPES and neu-
tron scattering.

Because of the time ordering operator [ ( ) ( )]T t tt 1 1 1 2 in Ŝ2

matrix, the fluctuation–dissipation theorem is invalid to evaluate
the resonant Γ2 and the mixed Γ12. In most studies of the Raman
or the X-ray scattering spectrum, Γ2 and Γ12 are evaluated from
the Kramers–Heisenberg formula [1,3], where the perturbation is
badly controlled and numerical methods are applied. No reliable
perturbation formalism is established even for the weakly inter-

acting electron system. The time ordering in Ŝ2 matrix is the dif-
ficulty we should overcome to establish a perturbation formalism
to evaluate Γ2 and Γ12.

From the picture of a time evolution, the scattering probability Γ
involves two time evolution processes, forward time ordering from
the initial state Ψ| 〉i at ti to the final state Ψ| 〉F at tf, and backward
anti-time ordering from the final state Ψ| 〉F back to the initial state

Ψ| 〉I . Introducing an anti-time ordering evolution matrix
∼
S ,

∫
( ) = ( )

∼ ∼ − ℏ ( )
S t t T e, , 12i f t

i dtV t/
tf

ti
I

we can then define the anti-time ordering
∼
S1,2 matrices analog to

Ŝ1,2 in Eq. (7). Following the time-and-anti-time evolution picture, Γ
2 can be expressed as

Fig. 1. Schematic light scattering from a target matter. | 〉p ei i and | 〉p ef f denote the
incoming photon state with momentum pi and polarization ei and the scattered
photon state with momentum pf and polarization ef , respectively.
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