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a b s t r a c t

A simple description of the Hall effect in the hopping regime of conductivity in semiconductors is pre-
sented. Expressions for the Hall coefficient and Hall mobility are derived by considering averaged
equilibrium electron transport in a single triangle of localization sites in a magnetic field. Dependence of
the Hall coefficient is analyzed in a wide range of temperature and magnetic field values. Our theoretical
result is applied to our experimental data on temperature dependence of Hall effect and Hall mobility in
ZnO.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The dc Hall effect (HE) in the hopping regime of conductivity
was addressed theoretically a number of times in the past [1–7],
and various mathematical expressions for the Hall coefficient RH
and Hall mobility μH were proposed. However, to our knowledge a
well established description of HE in the hopping regime does not
exist. Most theories of the hopping HE are based on calculation of
three-site-jump probabilities [1] and subsequent construction of
an equivalent resistor network in order to calculate the electron
transport coefficients. Here we present a different and simpler
derivation of the expression for the Hall coefficient and Hall mo-
bility in the case of hopping conductance. We derive an expression
for the transverse Hall-current based on the existing theory of
two-site jump rate and then, from the balance of the Hall-current
and transverse (compensating) electric-field-current, we derive
the expressions for RH and μH.

Our paper is organized as follows. We first calculate difference
of jump probabilities and Hall current Izm in magnetic field (Sec-
tion 2). In Section 3 we express Izm using the known formula of
two-site transition rate. Then in Section 4 we derive the expres-
sion for RH and μH. Comparison with experiment is given in Sec-
tion 5.

2. Tunneling probabilities

The Hall effect in the hopping regime is not caused by the
Lorentz force, because in the hopping conduction an electron can
only follow a limited number of paths defined by the electron
localization sites (LS). It is commonly considered that HE in the
hopping regime is related to the self-interference effect of the
electron wave function which propagates along different hopping
paths in the magnetic field. Thus, to observe the interference, at
least three localization centers should be taken into account. This
mechanism was applied for the first time by Holstein [1], for de-
scription of hopping HE.

An electron trapped on a LS can jump to any of its neighbors.
We will consider only a fraction of jumps which contribute to the
net current. Because hopping probability decreases exponentially
with the distance [8], let us consider only two closest neighbors of
any occupied LS, from the half-space in the direction of the net
electron flow. In this manner for most occupied LSs we can con-
struct a triangle of sites, which will contribute to HE. In order to
simplify the calculation we are going to average over all possible
triangles, and consider an equilateral triangle with the side length
Δr equal to average distance between localization sites (Fig. 1a).

In the initial state an electron is located on the site 1 (Fig. 1a).
We will calculate the probability to find the electron on the sites
2 and 3 in magnetic field. The difference in the occupation prob-
abilities for the sites 2 and 3 will produce over time a nonuniform
charge distribution and the Hall voltage.

We will use for the calculation the Feynman's “probability
amplitude” approach [9]. We denote by ψ12, ψ13 and ψ32 the
probability amplitudes of hopping between pairs of sites 1-2, 1-3
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and 3-2, without any other localization sites around. Let us cal-
culate first the probability of a jump to the right localization site in
the considered triangle. The probability amplitude that the elec-
tron will be detected on site 2 is

Ψ ψ ψ ψ= + ( ). 1r 12 13 32

The hopping paths, which are taken into account in this formula,
are shown in Fig. 1a by arrows. Then the probability of hopping to
the right will be

Ψ Ψ= ( )⁎P . 2r r r

We will represent probability amplitudes in the form
ψ = φf eij ij

i ij, where fij and φij are real values. The amplitude fij is a
measurable value which is related to the hopping rate and φij is
the additional phase gained during the transition from one site to
another.

Due to the symmetry of the problem there is = ≡f f fa12 13 . We
denote these values as fa. There is ≡ <f f fb a32 because the tran-
sition from site 3 to 2 is not facilitated by applied electric field.
Thus ψij can be written as

ψ ψ ψ= = = ( )φ φ φf e f e f e, , . 3a
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After substitution of Eq. (3) into Eq. (1) we get

Ψ = [ + ] ( )φ φ φ φ( + − )f e f e1 . 4r a
i

b
i12 13 32 12

Phases φij can be written [9] as φ φ φ= +ij ij ijH0 , where φij0 is the
phase gained in the absence of magnetic field, and the φijH is the
phase change induced by magnetic field. The expression for φijH is
[9]

∫φ
ħ

= − ( )A r
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d , 5ijH
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and the expression in the exponent in Eq. (4) can be written as
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Here β stands for φ φ φ+ −130 320 120. The sum from the parentheses
can be transformed into

∫ ∫ ∫ ∮ Φ+ + = = =
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In the last transformation we have used Stokes’ theorem and
relation ∇ × =A B. Since we assume a uniform magnetic field, the
integral will result in the product BS, where B is the magnetic

induction and S is the surface area outlined by the integration path
→ → →1 3 2 1. It is not obvious how this path looks like, but it is

logical to assume that tunneling occurs along the shortest path. In
such case S is the area of the triangle. Then, the expression in the
parentheses equals to the magnetic flux through the triangle
formed by three localization sites. Since the direction, followed by
the integration path, coincides with the direction of rotation of the
vector potential A (see Fig. 1a, b), the value of the integral is po-
sitive and hence φ φ φ ħ Φ+ − = − ( ) <e/ 0H H H13 32 12 .

After the substitution of Eqs. (7)→(6)→(4)→(2), we obtain the
probability of electron jumping to the right
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Since ħ Φ−( ) <e/ 0, the total phase in Eq. (8) will decrease and
hence Pr will increase with the increasing magnetic field.

A similar consideration of the probability of electron jumping
to the left (localization site 3) gives
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This shows that the phase will increase and Pl will decrease
with the increasing magnetic field. Thus, electron will tend to
deviate more often to the right, which coincides with the direction
of deviation that would be induced by the Lorentz force.

In order to obtain normalized probabilities we introduce two
new quantities
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These are relative probabilities, indicating the chance to find the
electron on the right or left site, if the transition has already oc-
curred. For the normalized values there is + =P P 1rn ln and, in the
absence of magnetic field, ( ) = ( ) =P P0 0rn ln

1
2
, as one would expect

in the symmetric system.
The Hall voltage appears due to asymmetry between the

probabilities of jumps to the right and left side of the triangle, and
it is proportional to
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In the Appendix we show, that β π= /2, and hence this ex-
pression is simplified to

Fig. 1. (a) Averaged triangle of localization sites. The occupied LS is marked by the black circle. Arrows show two possible hopping paths leading to localization site 2. Angle θ

describes the direction of propagation of acoustic wave. (b) Direction of the applied electric field (current flow), direction of uniform magnetic field and direction of rotation
of the magnetic vector potential. (c) Coordinate system and schematic picture of the considered electric currents.
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