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a b s t r a c t

The paper investigates the effects of a two-level quantum system coupled to transversal and longitudinal
dissipative environment. The time-dependent phase accumulation, LZ transition probability and entropy
in the presence of fast-ohmic, sub-ohmic and super-ohmic quantum noise are derived. Analytical results
are obtained in terms of temperature, dissipation strength, LZ parameter and bath cutoff frequency. The
bath is observed to modify the standard occupation difference by a decaying random phase factor and
also produces dephasing during the transfer of population. The dephasing characteristics or the initial
non-zero decoherence rate are observed to increase in time with the bath temperature and depend on
the system-bath coupling strength and cutoff frequency. These parameters are found to strongly affect
the memory and thus tailor the coherence process of the system.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

A large number of quantum phenomena can be investigated
with the help of a two-level system. In the absence of environ-
mental coupling, two-level quantum systems can experience an
avoided crossing in time [1–4] and is generally known as the
Landau–Zener (LZ) problem. The quantities of interest are com-
monly the population probabilities for both the ground and the
excited diabatic states at exceedingly long time intervals far from
the crossing region. Such a universal phenomenon is ubiquitous
and have applications in quantum electrodynamics [5,6], spin-flip
in nanomagnets [7], Bose–Einstein condensates in optical lattices
[8] and adiabatic computing [9–19] where the environment is
considered as a source of classical noise [20–23], or quantum
fluctuations that lead to transitions between qubit states [16,?,25–
34] or pure dephasing [35,36]. Environment-driven LZ transitions
have been applied for the optimal implementation of an adiabatic
quantum computing algorithm given the promise of adiabatic

quantum computing as an alternative approach to achieve ex-
tremely high-speed computation [37,38].

Environmental parameters, such as temperature, are found to
exponentially enhance the coherent oscillations generated within
a LZ transition [30]. Specifically, it has been shown that the oc-
cupation probability of a two-level system coupled to harmonic
oscillation exhibits a nonmonotonic dependence on the coupling
strength and temperature [39].

In Ref. [40] the authors interpret the LZ transition as an inter-
ference process and demonstrate the enhancement of the
asymptotic transition probability due to the phase-uncertainty
factor. On the other hand, the transition probability transition of
the two-levels in the LZ model is suppressed by relaxation events
due to energy dissipation of the system. Thus dephasing and re-
laxation may have competing effects on the dynamics [41,42].
Hence, coherence times are very limited in two-level quantum
systems preventing the observation of Rabi oscillations. However,
these oscillations have been experimentally observed as a result of
multiple LZ processes (more than 100) in a single electronic spin
system [43].

In this paper we investigate the effects of a two-level quantum
system coupled to an ohmic, sub-ohmic and super-ohmic en-
vironment. The system–bath interaction is of spin-boson model
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type with longitudinal and transversal couplings. Since the
asymptotic value of the LZ transition probability does not show the
temporal evolution of the quantum system, it is necessary to
perform detailed analysis on the dynamics of a two-level quantum
system in the presence of dissipation. We derive the time-de-
pendent phase accumulation and the LZ transition probability in
the presence of fast quantum noise. We measure the coherence
dynamics of a two-level quantum system with fast quantum noise.

The paper is organized as follows: in Section 2, we present the
dissipative LZ model and the corresponding Hamiltonian. In Sec-
tion 3, we develop the density matrix approach in a dissipative LZ
model and derive the asymptotic LZ transition probability. In
Section 4, we derive the time dependent LZ transition probability.
Section 5 studies the time dependence coherence of a two-level
quantum system in the quantum bath. Section 6 is the conclusion.

2. Model system Hamiltonian

Consider a two-state system originally in the state 〉1 at time
= − ∞t and evolves non-adiabatically in time to a final state 〉2 . If

the energy difference between the diabatic states is considered to
vary linearly with time then for an isolated system, the LZ Ha-
miltonian is given by

( ) β σ σ^ = ^ + ^ ( )H t t J . 1LZ z x

Here, β= >v 2 0 is the velocity; σ ℓ =ℓ x z, , , Pauli matrices and J
the LZ gap.

Suppose our system is subjected to a quantum bath with the
total Hamiltonian

( ) ( )^ = ^ + ^ + ^
( )H t H t H H , 2LZ SB B

where

( )∑ σ γ^ = ^ ^ + ^ ℓ = ( )
( )ℓ

ℓ
†

H a a x y z, , ,
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†
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the bath Hamiltonian; γk, the coupling strength and where âk and
^ †
ak are respectively the phonon annihilation and creation opera-
tors. We assume the bath to be in thermal equilibrium at tem-
perature T and exceedingly larger than the system thus leading to
Gaussian fluctuations. Therefore, the average over the ensemble of
classical functions can be replaced by the thermal expectation
value. Consider the following unitary transformation with respect
to the bath:

∫( ) = {− ′} ( )U t i H dtexp . 5B

Then in the interaction picture, the total Hamiltonian in Eq. (2)
reads:

( ) ( ( )) ( ( )) ( )β σ σ σ^ = + ^ + + ^ + ^ ( )H t t f t J f t f t . 6k z k x k y

Here the function ( )f tk characterizes the environment and obeys
the Markovian Gaussian process specified by the following two-
time correlation function:

⎡⎣ ⎤⎦{ } ( ) { }( ) ( ) ( ) ( )∑
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with

( )〈 〉 = ( )f t 0. 8k

Here, 〈⋯〉 denotes the thermal expectation value and
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are the average phonon occupation numbers. The relevant aspect
of Eq. (6) corresponds for instance to spin frustration by hyperfine
field or Overhauser field.

3. Density matrix approach in a dissipative environment

Theoretically, the important object for the investigation of the
system's dynamics is the probability P(t) of finding the system at
time t. In the Linblad axiomatic formalism the irreversible time
evolution of a system is described by the following general
quantum Markovian master equation for the density operator [44]

⎡
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ρ ρ
ρ ρ
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From here we arrive at the following system of differential equa-
tions for the two-level system:
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where ρ ρ ρ= −11 22, ( ) = + ( ± ) ( )±f t J i f t1k k with
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The integral–differential equation for the occupation difference ρ
is obtained from Eq. (12):
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Following Ref. [22], the solution of Eq. (14) can be written in the
form of a series, considering the initial condition ρ ( ) =t 11 :
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where the indices are non-zero positive integer and,

Ω( ) = {− ( )} ( ) ( )+ −A t t i t t f t f t, exp , k k1 1 1 , ∫Ω β( ) = ( + ( )t t t f t dt, 2
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Considering Gaussian statistics we express the correlator as in Ref.
[20]:
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From here, we evaluate the thermal expectation value of Eq. (16)
applying Wick's theorem considering time ordering:
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