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We present a numerical analysis on thermodynamics of a harmonically trapped ideal Fermi gases sub-
jected to either rotating frame or synthetic magnetic field. We discuss the rotation frequency de-
pendency of chemical potential, specific heat, magnetization, particle flow and density profile. Our re-
sults demonstrate that the magnetization displays three characteristic regions: mesoscopic fluctuation,
de Haas-van Alphen oscillation and Landau diamagnetism. The center and amplitude of oscillation peaks
in particle flow in rotating frame exhibit much stronger dependence on rotation frequency than those in
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1. Introduction

Recently, an ideal, inhomogeneous, quantum many-body Fermi
system is realized in cold atomic system [1-3]. Although perhaps
not as dramatic as the phase transition associated with bosons, the
thermodynamic behavior of trapped Fermi gases also merits a
renewed attention. Among these studies, a trapped Fermi gas
subject to a rotation is an interesting issue due to its stability [4].
Earlier proposal is to rotate atomic gases in a rotating trap, which
is called rotating frame method [5]. This is similar to the rotating-
bucket experiment of superfluid helium. More recently, synthetic
magnetic field approach is developed in experiments [6,7]. This
approach creates an effective gauge potential for neutral cold
atoms by means of an optical field and thus makes neutral atoms
behave like charged particles in a magnetic field. By choosing the
proper “magnetic field”, one can simulate astrophysical scenarios
and observe physical effects, such as formation of non-Abelian
magnetic monopoles for cold atoms [8].

An advantage of ultracold Fermi system is its high purity and
controllability, which is needed in conventional Fermi systems,
such as electrons in atoms, electron gases in the solid-state context
and metals, and nucleons in nuclei [9-14]. Recently, many ex-
perimental and theoretical groups have studied the magnetic re-
sponse of electrons in metals under various confining potentials,
which lead to the generation of de Haas-van Alphen-type oscil-
lations in persistent current and consequently orbital magnetism
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[11-13]. However, the directly experimental observation on these
quantum oscillations in current and orbital magnetism for con-
strained electron system becomes rather difficult due to the bulk
characteristics. On the contrary, rotating Fermi gas can offer re-
searchers an opportunity to investigate many-body physics of
confined electrons.

In this paper, we propose a theoretical scheme to mimic the
motion of confined electrons under a magnetic field in a fast ro-
tating background and observe these quantum oscillations in
physical observable by use of rotating ideal Fermi system [4,15].
Based on their similar Hamiltonians between confined electrons
and rotating neutral fermions, we believe that such interesting
magnetic behavior of confined electrons is expected to exhibit in
rotating Fermi gases. We study thermodynamics of harmonically
trapped ideal Fermi gases in two rotary modes (synthetic magnetic
field and rotating frame). One main concern of our work is to show
how the oscillatory behaviors in fermions depend on the tem-
perature and rotary modes.

The paper is organized as follows. In Section 2, we give a short
review of model and derive the thermodynamic expressions. We
discuss the low and high temperature limits of chemical potential
and specific heat based on semi-classical approximation. In Sec-
tion 3, we present the corresponding numerical results and make
an elaborate comparison with two rotary modes. We emphasize
the similarities but also the key differences between synthetic
magnetic field and rotating frame. In Section 4, we calculate the
particle flow distribution in rotating Bose gases to compare with
that for Fermi case. In the last section, we give a brief summary of
our main results.
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2. Model and expressions of thermodynamic quantities
2.1. Trapped Fermi gases in synthetic magnetic field

We consider a spinless fermion of mass M moving in a har-
monic trap under a synthetic magnetic field B = e,B with effective
Hamiltonian
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P is the momentum operator, and fz is the orbital angular mo-
mentum operator. @y and @, represent the transverse and axial
frequencies of harmonic potential, respectively. w; denotes Larmor
frequency.

Note that Eq. (1) looks like that of trapped charged particles in
a magnetic field with gauge potential A = (B x r)/2 [16]. Therefore,
per-particle eigenvalue can be written in the dimensionless form
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wheren=0,1,2, ..., k=0,1,2, ... are non-negative integers, and
m=0, + 1, + 2, ... is the angular quantum number. Aspect ratio of
harmonic trap and dimensionless synthetic magnetic field are
defined by a = wo/w, and B = w;/w,, respectively.

The corresponding per-particle eigenfunction in the cylindrical
coordinate is
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where the radial wave function
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L,L’"‘ is the Laguerre polynomial. The characteristic lengths are de-
fined by | = \/#i/Mw and ¢ = \/A|Mo, with o = /o + of.

This system is comprised of a Fock-Darwin-like state in xy
plane and an eigenstate of harmonic oscillator in the z direction.
The rotating symmetry of the harmonic trap is more incorporated
in the cylindrical coordinate [12-14,17,18]. Eqs. (2) and (3) are
valid for harmonically trapped particles, including electrons with a
finite magnetic field [12-14], and neutral fermions or bosons un-
der a moderate rotation [16-18]. Under an extremely strong
magnetic field or a rapid rotation limit, the centrifugal force tends
to reduce the harmonic confinement potential. Then the system
will lose its stability, and Eq. (2) reduces to the Landau level. In this
paper, we investigate thermodynamics of fermions under a mod-
erate rotation with eigenvalue Eq. (2) and eigenfunction Eq. (3).

In experiments, the thermal energy kgT far exceeds the level
spacing Aaw, thus we can replace the sums over all quantum states
by an direct integral which is called semi-classical approximation
[16]. We take the particle number as an example:
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n(¢) is Fermi distribution function and u = exp(z/T) is the fugacity.
T = kgT[(hw,) and i = u[(hw,) are the dimensionless temperature
and chemical potential, respectively. In the process of derivation,
we have used the Fermi integration fiw) =

a/rs)) f0°° dx xS~ (ule* + 1) and function
re) = f0°° ys=le~¥ dy.

Similarly, the per-particle internal energy and specific heat
then take the forms
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Eq. (8) is derived from Eq. (7) by using the expressions
fio1(x) =x (d[dx)f; (x) and oN/[oT = 0.

Next, we discuss two limit cases of low and high temperatures.
In the region of low temperature, u—s oo, Fermi integration can be
written as a quickly convergent series by Sommerfeld lemma
[19,20]
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Then we obtain the Fermi energy which is defined as the chemical
potential in absolute zero temperature with Eq. (6):
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The chemical potential and per-particle specific heat are written as
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In the region of high temperature, u—0 , Fermi integration can
be expanded as
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Consequently, the chemical potential and per-particle specific heat
are expressed as
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and



Download English Version:

https://daneshyari.com/en/article/1808517

Download Persian Version:

https://daneshyari.com/article/1808517

Daneshyari.com


https://daneshyari.com/en/article/1808517
https://daneshyari.com/article/1808517
https://daneshyari.com

