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1. Introduction

The motion of quantum mechanical particles can be associated
with interesting topological properties. Beyond the standard ex-
ample of the quantum Hall effect [1,2], lattice problems with zero
net magnetic field attracted considerable recent interest. The
honeycomb model with complex next-to-nearest neighbor hop-
ping by Haldane [3] provided the blueprint for a considerable
fraction of the current day literature on topological band struc-
tures [4,5]. Despite its pivotal role in the development of this field,
a direct experimental implementation was only recently demon-
strated with ultra-cold atoms [6]. The interesting topological
properties of this model arise from the interplay of two energy
scales: the strength of the complex next-to-nearest neighbor
hopping t'ei?, which breaks time-reversal symmetry if ¢ ¢ {0, z},
and the sub-lattice potential V, which breaks inversion symmetry.
The natural question that poses itself is how an additional energy
scale in the form of interactions enriches the picture.

Interactions can alter the physics of particles on topological
band structures profoundly. There are several possible scenarios of
how interactions can induce new phases. First, for partially filled
bands interactions might stabilize gapped quantum liquids akin
the Laughlin states for the fractional quantum Hall effects [7-9].
Another possibility is that the interplay of t’, V and an interaction
scale U leads to symmetry broken states, where the quasi-particles
above these states inherit the underlying band-topology [10].

In this paper we discuss how such symmetry broken states can
arise at half filling. We explain how they can be described beyond
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a simple Hartree-Fock theory using slave-particle techniques. Fi-
nally, we calculate response functions relevant to current experi-
ments with cold atoms and show how the topological properties
of the band structure are revealed. These questions deserve at-
tention as current experiments implement fully tunable honey-
comb lattices [11,6] where both the Berry curvature of the bands
have been measured [12] and interactions effects have been ob-
served [13].

In the following, Section 2, we introduce the concrete model
under investigation. We discuss its possible phases and derive
them using both a simple Hartree-Fock (Slater determinant) trial
wave function as well as a more sophisticated 2z, slave-spin
method [14,15] which is able to capture interaction effects beyond
the physics of Slater determinants. In Section 3 we derive the re-
sponse functions relevant to the current experiments with ultra-
cold fermions.

2. Ionic Hubbard model at half filling on the honeycomb
lattice

2.1. Model

We study the ionic Hubbard model on the honeycomb lattice
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Fig. 1. Setup. (Left) The honeycomb lattice with its two sub-lattices A and B. The
gray arrows indicate the phase convention of the next-to-nearest neighbor hop-
ping, see text. (Right) The different terms in the Hamiltonian: the hopping am-
plitudes t and t’; the sub-lattice potential V; and the local repulsion between dif-
ferent spin species U.

o= 1, and t; denote the hoppings on the honeycomb lattice as
indicated in Fig. 1. The hopping to the next-to-nearest neighbors is
associated with a phase ¢, such that the fermion gains ¢, when
the hopping is performed clockwise around the unit cell. Finally,
we have terms proportional to an onsite repulsion U between the
different spin-species and a sub-lattice potential V. We do not
specify a chemical potential as we only consider the case of half
filling, i.e., one particle per lattice site where the number of
t—fermions equals the number of |—fermions.

Let us discuss the well-known phases of this model. For near-
est-neighbor hopping only (t'=0) and V = U = 0, the half-filled
system is a semi-metal. The density of states vanishes linearly at
the particle-hole symmetric Dirac points at K = (2z/a)(2/3, 0) and
K = 2z/a)(1/3, 1/4/3), respectively [16].

Turning on t’' breaks the particle-hole symmetry. Moreover, if
¢ & {0, + 7} the system enters a quantum Hall state with Chern
numbers in both spin sectors C = (C;, C)) = + (1, 1) [3]. An inver-
sion-symmetry-breaking term as the sub-lattice potential, V # 0,
opposes the quantum Hall state and eventually renders the system
a simple band insulator with strong density modulation [3].

For V=0 but U > U the fermions form a spin-density wave
(SDW). Note that due to the vanishing density of states at the Dirac
point, a finite interaction strength U is needed for the SDW to
occur [17,18]. Eventually, for Ust the fermions get localized in a
Mott insulator and form a Heisenberg anti-ferromagnet [19,20].

How are the transitions between these phases characterized?
The onset of the SDW goes along with a symmetry breaking of the
spin-rotation symmetry SU(2) and can be well described within
the Ginzburg-Landau framework. The Mott transition on the other
hand is only characterized by a qualitative change in the charge
fluctuations, concretely by a vanishing charge imbalance between
the two sub-lattices. Finally, the transition where the Chern
numbers C are changing requires necessarily a closing of the ex-
citation gap. We are seeking a method that can capture all these
phases and transitions in a unified framework.

Readers who are not interested in the technical details can skip
the next section and directly advance to Section 2.3.

2.2. Method

In order to describe all aforementioned phases and transitions
we employ a slave-spin technique [14,15]. This method, which is
tailored to half filling, can track both the excitation spectrum and

strongly correlated phases such as the Mott insulator [21,22]. In
the following we give a concise account of the slave-spin method
and refer the interested reader to Ref. [15] for further details.

The basic building block of the slave-spin method is the in-
troduction of auxiliary degrees of freedom in the form of a con-
strained slave spin-1/2 (with eigenvalues I? = + 1/2) on every site
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where f are regular fermionic operators and n;, = f; f, . The
second part of Eq. (2) represents the constraint which slaves the
two operators f,_ and I; to each other. Moreover, it is evident from
the constraint that If = 1/2 corresponds to either an empty or a
double occupied site, while [7 = — 1/2 signals a singly occupied site.
Expressed in the new operators the Hamiltonian reads
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where we used the constraint to write the interaction part «U in
the slave-spin sector alone.

Assuming an ansatz for the ground-state wave-function of the
form 1¥) = 1¥) ® I¥;) we readily obtain the mean-field Hamilto-
nian
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where we added a global Lagrange-multiplier A to enforce the
constraint on average. The resulting meanfield Hamiltonians are
given by
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The two sectors (fermion and slave-sector) are linked via the self-
consistency equations for the two renormalization factors

g =4Iy and
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We are now confronted with the problem of solving the two
mean-field Hamiltonians (5) and (6). To this end we employ a
molecular field approximation to the transverse field Ising model
(6) and a Hartree-Fock approximation to (5). The benefit of using
the slave-spin approximation over a direct Hartree-Fock approx-
imation to the original model (1) lies in the fact that the slave-spin
method allows the interactions to renormalize the hopping
strength via g; and eventually render the system Mott insulating
at g; = 0. [23] Note that, strictly speaking, the method described
here does not give rise to an actual Mott insulator but to a rather
exotic state dubbed an “orthogonal metal” [22]. However, for all
values of g; # 0 this peculiarity does not arise and we therefore
use the slave-spin method here without further elaborating on the
orthogonal metal.

2.2.1. Hartree—Fock
We start with the Hartree-Fock approximation of the fermionic



Download English Version:

https://daneshyari.com/en/article/1808519

Download Persian Version:

https://daneshyari.com/article/1808519

Daneshyari.com


https://daneshyari.com/en/article/1808519
https://daneshyari.com/article/1808519
https://daneshyari.com/

