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ABSTRACT

We derive expressions for polynomials governing the threshold conditions for different types of locally
periodic Dirac comb potentials comprising of attractive and combination of attractive and repulsive delta
potential terms confined symmetrically inside a one dimensional box of fixed length. The roots of these
polynomials specify the conditions on the potential parameters in order to generate threshold energy
bound states. The mathematical and numerical methods used by us were first formulated in our earlier
works and it is also very briefly summarized in this paper. We report a number of mathematical results
pertaining to the threshold conditions and these are useful in controlling the number of negative energy
states as desired. We further demonstrate the correlation between the distribution of roots of these
polynomials and negative energy eigenvalues. Using these results as basis, we investigate the energy
bands in the positive energy spectrum for the above specified Dirac comb potentials and also for the
corresponding repulsive case. In the case of attractive Dirac comb the base energy of the each band
excluding the first band coincides with specific eigenvalue of the confining box whereas in the repulsive
case it coincides with the band top. We deduce systematic correlation between band gaps, band spreads
and box eigenvalues and explain the physical reason for the vanishing of band pattern at higher energies.
In the case of Dirac comb comprising of orderly arranged attractive and repulsive delta potentials, specific
box eigenvalues occur in the middle of each band excluding the first band. From our study we find that
by controlling the number and strength parameters of delta terms in the Dirac comb and the size of
confining box it is possible to generate desired types of band formations. We believe the results from our
systematic analysis are useful and relevant in the study of various one dimensional systems of physical
interest in areas like nanoscience.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

calculations on eigenvalue spectrum and band formation in one
dimension using delta function potentials [10] to represent atoms

The knowledge of electronic band structure, being the sig- or molecules. Their numerical calculations focus on the band

nature of solid state physics is important in understanding the
theory of conduction, insulation and several other properties of
solids [1,2]. With the multi-faceted advances in nanosciences, in
recent years there is revival of interest in exploring the properties
and physical features generated by locally periodic array of finite
number of atoms and molecules leading to band formation. This is
useful in understanding the transition from quantal to macro-
scopic domain. In particular, the transition from the well separated
discrete energy spectrum to band formation [3-9] with increase in
the number of atoms in the array and its dependence on the
potential parameters identified with the atoms shows several
interesting features. Behera et al. [8] have carried out model
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structures and the energy density distributions generated by lo-
cally confined delta potentials in one dimension (1D). In this paper
our motivation is to systematically correlate several interesting
basic features inherent in the quantum mechanics of such locally
periodic delta potentials. Some of these are: exploring (i) the
correlation between the number of delta potentials and the
number of eigenvalues in a given positive energy band and the
pattern of the band structure generated by the attractive and
corresponding repulsive potential, (ii) the role played by the ne-
gative energy states and threshold conditions governing the band
structure and (iii) interconnection between band gap, band spread
and the size of the 1D box containing the delta potentials and to
carry out a comparative study of several types of locally periodic
potentials in a free 1D space and confined inside a 1D box. We
believe the theory and calculations described in this paper can be
useful in the study of novel 1D systems and in the exploration of
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the physics of finite number of suitably arranged atoms or mole-
cules. Refs. [11-18] provide an additional representative list of
work carried out in this area using delta potentials. In order to
visualize the scope and approach taken in this paper, we provide
some details of the recent results obtained by us [17,18] since they
form the general frame work for the present study. In Refs. [17,18]
we have investigated the spectrum and threshold conditions
generated by locally periodic sum of delta function potentials
U (p, a, x) having same strength parameter V:

p
Up,a,x)= Y Ve, sx —an), a>0.
n=1 (])

Here A is a parameter having dimension of length introduced to
compensate the dimensionality of §(x — na). We have assumed A
to be of unit length and ¢, is a dimensionless parameter useful to
generate different patterns of U (p, a, x). We use the system of unit
in which 2#=1 and 2m =1 such that U and energy E have di-
mensionality L-2. The numerical data reported in this paper for
eigenvalues have a dimension of L-2. They can be converted to the
corresponding values in more common unit when mass m and
unit of length are specified. For example, in the case of electron
E(eV) = 0.03816E (nm2). The separation between two adjacent
delta potentials is a. In Table 1 we list different types of U (p, a, X)
studied earlier [17,18] and identify them in this paper with ap-
propriate symbols. In particular U._(N, g, x) is defined in the half
line x > 0 with an infinitely high wall at x=0. In our earlier work
[17,18] this potential was indicated by the symbol U (N, r) and was
used to explore the s wave bound states in three dimensions (3D).
For all practical purposes quantal 1D problem specified above in
half line x > 0 and the corresponding s wave problem in 3D are
equivalent. The potential U; (p, a, x) obtained by setting ¢, = ( — 1)"
is a sequence of alternating attractive and repulsive delta

Table 1

potentials; when p is odd the last attractive delta term is not fol-
lowed by a repulsive term. One of the main results [17] is the
explicit construction of polynomials D{(N, g) and Ds(N, g) corre-
sponding to U_(N, a, x) and U._(N, a, x) in the dimensionless vari-
able g = AVa. The positive roots g1, g5,..., gy of these polynomials in
increasing order give the combination of potential parameters
needed to generate a threshold or zero energy bound states. It was
demonstrated that when N is sufficiently large the variation of
these roots g, of D{(N, g) or D3(N, g) as a function of n has a be-
havior similar of that of Fermi function. In the case of D;(N, g) and
D3(N, g), as N becomes large the largest root gy — 4 and the
smallest positive definite root tend to zero. In the case of
U-(2N, a, x), U:(2N — 1, a, x), the corresponding polynomials gov-
erning the threshold conditions are D;(2N, g), D-(2N - 1, g) and
each has N non-negative roots gy, £,..., gn. In this case gy — 2 and
the smallest positive definite root tend to O as N becomes large.
Salient features of  U(N,a,x), U._(N,a,x), U:(2N, a, x),
U:(2N + 1, a, x) and corresponding polynomials are listed in Ta-
ble 1. We observe that the order of threshold polynomial is same
as the number of delta potential terms in the corresponding po-
tential. Further we find that the number of attractive delta terms
in the given potential gives the upper bound for the number of
bound states with E < 0. When g exceeds the limiting value stated
above, all N bound states get generated. When iVa = g,, n number
of E <0 eigenvalues will be generated and highest eigenvalue
E,=0. This shows that using the roots g, we can fix the potential
parameters to generate a desired number of E < 0 eigenvalues. As
a consequence of approximate Fermi function behavior of g, as a
function of n, negative energy eigenvalue tends to group more
densely at either end of the spectrum having eigenvalues E, < 0.
In the light of the results summarized above, in this paper we
investigate the threshold conditions, negative energy bound states

Different types of locally periodic sum of Dirac potentials with fixed separation parameter a investigated [17,18] using the basic expression U (p, a, X) = Zﬁ:] Wend(x — an)

along with the related information needed to calculate the bound states and threshold energy conditions. The coefficient ¢,(N) occurring in the last column can be computed

recursively as described in our earlier work [18].

Locally periodic sum of Dirac Remarks

potentials

Boundary conditions on ¢ for Polynomial governing the generation of threshold bound
bound states (see Eqs. (4)-(6))

state

Ux(N, a, x) = U(N, a, X)
en=1, Xl <

Repulsive case

No bound states

Not applicable

UZN, a,x) =UN, a, x) Attractive case ¢(— ) =0, Di(N, g) = Zy:o ca(N)g™,
en=—1, Ixl < © @(c0) =0, g=4Va
B1=0, The roots g, are within the domain (0,4)
An+1=0
E<O
Us_(N,a,x)=U(N, a,x), x>0 Attractive case defined in the half ¢ (0) = D3(N, g) = Zg:o dn(N)g™,
line x > 0
=00, X< 0 @(c0) =0, g=Va
Bi= - A, The roots g,, are within the domain (0,4)
Any1 =0,
E<O
U+ (2N, a, x) = UR2N, a, x) Sequence of'attractlve and repulsive ¢ ( - ) =0, D1=(2N, g) = EnN:O cF2N)g2n,
delta potentials
en=(-1D" Xl <o @(0) =0, &= aVa, ¢ 2N) = ca(N)
B1=0, The positive roots g; are within the domain (0,2)
Any1 =0,
E<O
Uz2N +1,4a,%) Sequence of attractive and repulsive ¢ ( - ) =0, Diz@N+1,8) = gZN dF QN + 1)g2n,
delta potentials having last attrac- n=0
tive term unpaired
=U@RN+1,a,x) ¢(0) =0, g=2Va, df 2N + 1) = dn(N)
en=(—-D" Ixl < o0 B1=0, The positive roots g; are within the domain (0,2)
Any1 =0,

E<O
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