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a b s t r a c t

The phonon thermal contribution to the melting temperature of nano-particles is inspected. Unlike in
periodic boundary condition, under a general boundary condition the integration volume of low energy
phonon for a nano-particle is more complex. We estimate the size-dependent melting temperature
through the phase shift of the low energy phonon mode acquired by its scattering on boundary surface. A
nano-particle can have either a rising or a decreasing melting temperature due to the boundary condition
effect, and we found that an upper melting temperature bound exists for a nano-particle in various
environments. Moreover, the melting temperature under a fixed boundary condition sets this upper
bound.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

This work focuses on the quantum size effect with particular
emphasis on environment-dependent melting temperature of
nano-particles. The continuing progress in the design of nano-
particles led to enhanced and novel functionality [1]. Concerning
the thermal stability of heat resistant [2], we ask a question: Can
nano-particles stand a temperature higher than the one its fixed
surface partners melt at? There are many different thermo-
dynamic theories of small systems [3–5], each considering differ-
ent important aspects of size-dependent melting of nano-particles.
The discrete quantum energy level has not been carefully con-
sidered in these theories. The critical role of phonon in thermal
related phenomena is well-known [6,7]. But only recently the fi-
nite spacing energy levels became a greater awareness in size-
dependent melting [8]. There is a chance to understand the rising
of size-dependent melting temperature of nano-particles with
more attention on the important aspect of quantum finite size
effect. We estimate in this work the change of melting tempera-
ture by coating a fixed size particle or changing its environment.
We give the upper limit of the change on melting temperature.

The melting temperature for small particles was modeled and
studied more than 100 years ago [9], and the pressing need for a
deep understanding continues today [10–14]. In this study, we use
the Lindemann melting criterion [15–17] for its simplicity in es-
timating the melting temperature of a nano-particle with different

boundary conditions. By Lindemann criterion, a nano-particle
melts at the temperature Tm at which the ratio of u, the square root
of the mean square of atom thermal displacement, to a the lattice
constant reaches the Lindemann critical value Lc:
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2. Periodic boundary condition

The details of our model can be found in a previous work [8].
Thus we briefly show some necessary derivation for u(T) in har-
monic approximation in this section. In the model we have a lat-
tice specified by a set of vectors Ri, with one atom at each lattice
point. The displacement ui of an atom from its equilibrium posi-
tion Ri can be calculated by
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where x y z, ,α = and uiα is the αth component of the displace-
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of the nano-particle is at the origin of coordinates, and the
boundary of the nano-particle is set on R La

2
= ±α surfaces in co-

ordinate space. N L3= is the number of atoms in the nano-particle.
M is the mass of the atom. The potential energy Φ is expanded to
the second order and u uR R, / i ji j

2
0Φ Φ( ) = (∂ ∂ ∂ )αβ α β .

The equations of motion of the lattice is then
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The general solution can be written in vibration modes Q kσ:
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kω ( )σ and ekσ are phonon frequency and phonon polarization of
wave-vector k, respectively. The atomic mean-squared thermal
displacement is [18]
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where 〈 〉 means grand canonical ensemble average. The center-of-
mass motion is u ucm

N i i
1= ∑ . The square root of the mean square

of atom thermal displacement, u(T), is given by :
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Melting temperature Tm is obtained by solving Eq. (1). We will use
boundary conditions to account for various environments.

For periodic boundary condition the mode expansion function

for atom displacement in each α-direction is f k R e, i L
ik R1 i( ) =α α α α,

k n La2 /π=α α , and n L L/2 1, , /2= − + …α . The melting temperature
Tmn for size L nano-particle under a periodic boundary condition is
[8]:
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where k kω ω( ) = ( )σ is used when summing up the three polarized
vibration directions in each k mode. ucm is given only by the zero
wave-vector phonon at k¼0. The second term removes contribu-
tion of the global moving ucm 2( ) . This is the missing of phonon
contribution from the zero-mode volume. For the bulk system,
melting temperature Tmb is the solution of the same equation in
the limit of L1/ 0→ , which turns the second term into zero:
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3. Boundary reflective phase shift

A theoretical estimated expression for the melting temperature
of nano-particle will contain physical quantities with some un-
certainty. Beside the main variable, the size L, other physical fac-
tors may play a role in finite size melting, such as shape, surface
reconstruction, and environmental effect. An expression has to
have physical quantities not so certain to absorb all the different
factors from material to material, environment to environment,
and particle to particle. We use the phase shift of low energy
acoustic phonon for this function. A model with boundary is good
for nano-particles under different boundary conditions. The phase
shift of phonon mode depends on its scattering on the surface of a
nano-particle. A phase shift can be drawn from the experimental
data, or it has to be chosen with some uncertainty for a particular
situation before we can make estimation for a design of the

melting temperature.
The scattering and the phase shift have been studied most

thoroughly in the context of quantum theory. The notion of re-
flection of waves in one-dimensional scattering plays a central role
in the following detailed discussion. We model the boundary of
the nano-particle as an additional potential which is bigger than
zero outside the nano-particle and zero inside the particle. In any
α-direction, the general solution for Eq. (3) is in terms of waves
moving in opposite directions, f k R ce de, i

ik R ik Ri i( ) = +α α
−α α α α, for

each vibration mode Q kσ . We study the standing waves under a
general real boundary potential. The most general form for the
reflection coefficient would then be r ei k= δ α; the termination at
the boundary could at most introduce a phase change in the re-
flected wave:
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Different boundary conditions resulting in the same magnitude
of phase shift are physically equivalent. A very careful but long and
technical analysis on phase shift and boundary condition can
provide considerable understanding of nano-particle's surface and
environment. We will put this study under control with the as-
sumptions of an isotropic surface and environment, and the same
phase shift in each α-direction. The phase shift for a small wave-
vector is expanded up to the first order of L a k1/ : k 1δ δ= +α α. δ is a
constant phase shift and a1 is the expansion coefficient for the
first-order term. We will discuss on phase shift in the range of

, 0π[ − ], with corresponding boundary barrier effectively re-
pulsive. This phase shift is the parameter we used to model the
boundary effect.

The wave-vector is fixed by the boundary condition equation
(9). First, when the standing wave is of even parity, we have
c d/ 1= in f k R, i( )α α , and e 1i k La k =δ( + )α α . The mode expansion for
atom displacement on this kind of phonon mode is

f k R k R, cose
i

e
i( ) ∼ ( )α α α α , with ke n

La

2 ke=α
π δ+ | |α α . The integer nα runs

from 0 to L/2 1− . The second group is the odd parity group for
c d/ 1= − in f k R, i( )α α , and e 1i k La k =π δ( + + )α α . The mode expansion
for atom displacement on this kind of phonon mode is
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π δ( − ) + | |α α . The integer nα runs

from 1 to L/2. The low energy wave-vector has an increase La/kδ| |α

when 0kδ ≠α .

4. Fixed boundary condition

With the above inspection, we will be able to estimate the
melting temperature of a nano-particle under a general boundary
condition. The low energy wave-vector has an increase La/kδ| |α . The
melting temperature is increased by a boundary condition shifting
kα wave-vectors upward. The discrete summation of phonon
modes in Eq. (5) can be written into dk

La2 /2
∫

δ π α( | |− )
for each α-

component of wave-vector [8]. When /2kδ π| | =α the integration
volume for low energy phonon starts at k 0=α : dk

0
∫ α , which re-

sults in the same amount of low energy phonon contribution to
atom displacement as the case for bulk material in Eq. (8). The
cases for /2kδ π| | <α will depress the melting temperature of a
nano-particle. The lower bound of this depression when 0kδ| | →α
was carefully studied in the work of Sui et al. [8]. When /2kδ π| | >α ,
the melting temperature of a nano-particle will be higher than its
bulk parent.

We study the rising of the melting temperature due to the
phase shift. The boundary scattering shifts wave-vectors up to
k n La/kδ π= (| | + )α α α by a nonzero kδ α. The range of the phase shift

kδ α in kα is , 0π[ − ]. If /2kδ π| | =α , the density of the low energy
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