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a b s t r a c t

In this paper, we mainly investigate the effect of the interior periodic potential and the surface potential
on the energy of electronic state in quantum dot. Based on Chebyshev polynomials of the second kind
and matrix theory, we deduced one expression, which can clearly describe the relation of energy of
electronic state with the surface and interior periodic potential. The theoretical analysis shows that the
energy of electronic state in quantum dot strongly depend on surface potential and the interior periodic
potential. For the same quantum dot with different surface potential, the energy of electronic state with
the determined quantum number is different. For the quantum dot of same size with different interior
periodic potential, the energy of electronic state with the determined quantum number is also different.
The further study indicates that there are two different energy of electronic state in quantum dot for the
decided quantum number.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

A quantum dot is a nanocrystal made of semiconductor materials that are small enough to exhibit quantum mechanical properties. The
electronic properties of these materials are intermediate between those of bulk semiconductors and of discrete molecules, which are
closely related to its size and shape. For the study of the energy of electronic state in quantum dot, there were many works on the
theoretical studies about the electronic states [1–8]. In these studies, the quantum dot was considered as an infinite depth potential well.
For example, on the base of the adiabatic approximation, the adiabatic approximation with averaging and full numerical solution, Yiming
et al. solved the three dimensional Schrödinger equation, and gave qualitative as well as quantitative trends in electronic properties with
various parameters [9]. To calculate the ground state and first excited state energy levels in quantum dot, the nonlinear three dimensional
Schrödinger is solved, which shows that the principal quantum dot energy depends on various shapes [10]. By the method of integrating
directly the Schrödinger equation, Xiao-Yan [11] gave the calculated energy spectra for two electrons in quantum dot, which are in
excellent agreement with the results, and better than those by the WKB method and the WKB-DP method. In perturbation theory taking
into account the hybridization of states for cubic, ellipsoidal, cylindrical and tetrahedral shapes. The transfer matrix method was often
used for the determination of one-dimensional band structures [12–21]. For example, Hung and Wu [22] used transfer-matrix theory for
calculating a few low-lying conduction sub-bands and wave functions. However, few reports consider the effect of surface and interior
Periodic potential on energy band or band gap.

In this paper, we try to use Chebyshev polynomials of the second kind in matrix theory for the investigating the energy of electronic
state under different potential. This paper mainly analyzes the dependence of the energy on the quantum surface's potential and interior
periodic potential, which is valuable for the further study of quantum dot.
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2. Theoretical derivation

For the convenience of our investigation, one simple model is presented (shown Fig. 1). In model there is the periodic potential of U0

when x l Nb0 ≤ ≤ = and the surface potential of U1 when x x l0, or≤ ≥
Based on this model in Fig. 1, Schrödinger equation:
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here U x( ) is the potential, xψ ( ) is the wave function, E is the electron energy for the corresponding electron wave function. m is the
electron mass, ℏ is a Plank constant. By solving the one-dimensional Schrödinger equation, we can get, respectively
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here U1 is the surface potential of semiconductor, U0 is the interior periodic potential of semiconductor, F A B C D A B, , , , , ,0 0 0 0 0 1 1 are

constant, respectively, and U E ,m
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when x b0 ≤ ≤ , the wave function and it’s derivative is expressed as
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when x 0= , using Eq. (3), we obtained
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It can be written in the form of matrix
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Similarly, at x b= , we have also
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The solutions of function group (6) are, respectively,
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It can be written in the form of matrix
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Fig. 1. A simplified model of periodic potential in nanocrystalline.
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