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a b s t r a c t

In this paper, a fourth-order variable-coefficient nonlinear Schrödinger equation is studied, which might
describe a one-dimensional continuum anisotropic Heisenberg ferromagnetic spin chain with the oc-
tuple–dipole interaction or an alpha helical protein with higher-order excitations and interactions under
continuum approximation. With the aid of auxiliary function, we derive the bilinear forms and corre-
sponding constraints on the variable coefficients. Via the symbolic computation, we obtain the Lax pair,
infinitely many conservation laws, one-, two- and three-soliton solutions. We discuss the influence of the
variable coefficients on the solitons. With different choices of the variable coefficients, we obtain the
parabolic, cubic, and periodic solitons, respectively. We analyse the head-on and overtaking interactions
between/among the two and three solitons. Interactions between a bound state and a single soliton are
displayed with different choices of variable coefficients. We also derive the quasi-periodic formulae for
the three cases of the bound states.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Nonlinear Schrödinger (NLS)-type equations have been used
for people to study the nonlinear sciences including fluids, plas-
mas, optics, condensed matter physics, particle physics, and bio-
physics [1–8]. For instance, to describe the dynamics of a one-di-
mensional continuum anisotropic Heisenberg ferromagnetic spin
chain with the octuple–dipole interaction or the alpha helical
protein with higher-order excitation and interaction under the
continuum approximation, a fourth-order NLS equation [9–18],
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has been used, where the variables x and t represent the scaled
distance and the scaled time, respectively, u represents the

coherent amplitude in Glauber's coherent-state representation for
the Heisenberg ferromagnetic spin chain [9] or the probability
amplitude of the excitation in the protein molecular chain [10–12],
with ε being the expansion parameter [9] or lattice parameter [10],
the subscripts and asterisk, respectively, denote the partial deri-
vatives and complex conjugate. Eq. (1) has been derived from the
system describing the isotropic Heisenberg ferromagnetic spin
chain, with the Lax pair constructed [15], and from the alpha he-
lical protein with higher-order excitation and interaction, with the
bilinear forms and one-soliton solutions obtained [10–12]. Pain-
levé property of Eq. (1) has been investigated and perturbed so-
liton solutions have been obtained [16]. Nonlinear spin dynamics
governed by Eq. (1) has indicated that the addition of discreteness
effect, i.e., the fourth-order terms, can destroy the NLS integr-
ability [9]. Existence of the periodic weak solutions of Eq. (1) has
been proved [17]. Bright N-soliton solutions of Eq. (1) have been
constructed, where the asymptotic analysis has been applied to
the two-soliton solutions to illustrate that the interactions be-
tween the two solitons are elastic [13]. Dark multi-soliton solu-
tions for the corresponding defocusing system of Eq. (1) have been
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derived, while head-on and overtaking interactions have been
discussed graphically [14]. Via the Darboux transformation, one-,
two- and three-soliton solutions of Eq. (1) have been obtained
[18].

Methods to derive the soliton solutions of the NLS-type equa-
tions have been presented, such as the Darboux transformation
[19–21], Bäcklund transformation [22], inverse scattering method
[23] and Hirota method [24,25]. However, most of the aforemen-
tioned methods have only been related to the constant-coefficient
NLS-type equations [26], while the studies on variable-coefficient
NLS-type equations have been used to describe certain real si-
tuations in physical and engineering sciences [27]. For example,
variable coefficients in Eq. (2) as below may arise due to the pre-
sence of additional molecules such as the drugs in specific sites of
the alpha helical protein, distance between the neighbouring
atoms may vary along the lattices, atomic wave functions may vary
from site to site or there may be imperfections in the vicinity of
the protein molecules [18]. In Ref. [28], an inhomogeneous gen-
eralized fourth-order NLS equation, i.e., Eq. (1) with an additional
term u h u dx2 x

2∫ | | (h is related to x), has been considered for the
inhomogeneous alpha helical protein or Heisenberg ferromagnetic
spin chain, in which the integrability and N-soliton solutions have
been derived and the propagation of the solitons have been dis-
cussed as well.

In this paper, with symbolic computation, we will investigate a
fourth-order variable-coefficient NLS equation:
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where t t t t t t t, , , , , ,1 2 3 4 5α β γ γ γ γ γ( ) ( ) ( ) ( ) ( ) ( ) ( ) and t6γ ( ) are all the real
functions of t, which might be used to describe an inhomogeneous
one-dimensional continuum anisotropic Heisenberg ferromag-
netic spin chain or alpha helical protein. In general, Eq. (2) is not
integrable, but when we balance the linear dispersion terms with
the nonlinear terms using the method in Ref. [29], we find that
Constraints (7) can ensure Eq. (2) being integrable.

To our knowledge, Eq. (2) has not been studied in the existing
literatures. Motivated by that, in our paper, under Constraints (7),
bilinear forms, Lax pair, infinitely many conservation laws and
one- two- and three-soliton solutions for Eq. (2) will be derived in
Section 2. Evolution of the two and three solitons, including the
head-on and overtaking interactions, will be discussed graphically
in Section 3 with different choices of the variable coefficients.
Stationary and bound-state solitons will be obtained in Section 4,
where the quasi-periodic formulas for three cases will be derived
and some corresponding results will be discussed. Our conclusions
will be presented in Section 5.

2. Integrable constraints, bilinear forms, Lax pair, infinitely
many conservation laws and soliton solutions for Eq. (2)

2.1. Integrable constraints and bilinear forms for Eq. (2)

In order to derive the bilinear forms for Eq. (2), we can introduce
the dependent variable transformation u x t g x t f x t, , / ,( ) = ( ) ( ) [24,25],
where g x t,( ) is the complex function of x and t, f x t,( ) is a real one.
Eq. (2) can be transformed into

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢
⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥
⎥

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

i
D g f

f
t

D g f
f

g
f

D f f
f

t
g g

f

t
D g f

f
D g f

f
D f f

f
g
f

D f f
f

g
f

D f f
f

t
gg
f

D g f
f

g
f

D f f
f

t
g
f

D g f
f

g
f

D f f
f

t
g
f

D g f
f

t
g
f

D g f
f

D g f
f

t
g g

f

6 6

0,
3

t x x

x x x x x

x x

x x x

x x

2

2

2

2

2

2

2

1

4

2

2

2

2

2

2

2

2 4

2

2 2

2

2

2

2

3

2

2

2

2

2

2 4 2

2

5 2 2 6

3 2

5

α β

γ

γ

γ γ

γ γ

· + ( ) · − · + ( )
*

+ ( ) · − · · + · − ·

+ ( )
* · − ·

+ ( )
*· −

* · + ( )
* ·

+ ( ) · *· + ( ) ( *) =
( )

where Dx and Dt both are the bilinear derivative operators defined by
[24,25]
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x' and t' are the formal variables, x t,Φ ( ) and x t,Ψ ( ) are two differ-
entiable functions of x and t, m and n are two non-negative integers.
Setting D f f ggx

2 κ· = * and using
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with κ being a positive constant, we can transform Expression (3) into
two parts: one is the linear part
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and the other is the nonlinear part. To balance the nonlinear terms and
dispersive terms of Eq. (3), we hereby introduce the following in-
tegrable constraints which can be derived via the method in Ref. [29]:
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under which, the nonlinear part of Eq. (3) can be reduced to

R
t g

f
D g g

3
2

.
8x

1
3

2κγ
= −

( ) *
·

( )

From Constraints (7), we can find that there are only two independent
variable coefficients for Eq. (2), so that it is possible for us to express
the bilinear forms just including tα ( ), t1γ ( ) (and the independent
constant just introduced, κ). From Eqs. (6) and (8), we can derive the
bilinear forms for Eq. (2) under Constraints (7) as
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In such situations as the drugs in specific sites of the alpha
helical protein, pharmacological effects may differ as t changes
[18], so that we need to consider the inhomogeneity in an alpha
helical protein, where the terms related to tα ( ) represent the
transfer of energy along the hydrogen bonding spine at the lowest
order of the lattice parameter and the terms related to tγ ( ) re-
present the higher-order excitations and interactions. Electro-
magnetic flux may change with t, which leads us to consider the
inhomogeneous effects in a one-dimensional continuum aniso-
tropic Heisenberg ferromagnetic spin chain, where the terms
proportional to tα ( ) and tγ ( ) represent the elementary spin
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