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a b s t r a c t

Geometry effects on intra-layer inelastic scattering rate of interacting electrons in a coupled-quantum-
wells structure, at finite temperature, is theoretically investigated. The random phase approximation is
employed to calculate the dynamically screened electron–electron interactions at different temperatures,
electron energies and densities. This study is limited to the electrons which are close to the Fermi level so
that only quasi-particles contribute to the scattering rate. It is shown that while scattering rate increases
slightly with increasing well separation, this effect weakens quickly and broadening tends to a certain
limit which is the electron broadening in a single quantum layer. Moreover, the thickness effect in a
coupled-quantum-wells structure shows a strong decreasing trend with increasing well width. While the
electrons in the same layer make a substantial contribution to screening and as a result to inelastic
scattering rate, the electrons in the adjacent layer play an important role, as well.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The coupled-quantum-wells structure, consisting of two par-
allel semiconductor quantum layers which are coupled through
Coulomb interaction, is an interesting member of the nanos-
tructures family. Its special properties have been, both theoreti-
cally and experimentally, investigated for more than two decades
[1–9]. Still, people look for novel features in double quantumwells
(DQW) for further applications [10–15].

In a DQW, electronic many-body effects including electron–
electron intra- and inter-layer interactions, play a significant role
in the physical properties of the system. The quasi-particle in-
elastic scattering rate (the quasi-particle broadening) gives in-
formation about how fast electrons get scattered, or equivalently
how long quasi-particles stay in the system before annihilation,
due to Coulomb electron–electron interaction. The quasi-particle
lifetime (inverse of inelastic scattering rate) which determines
relaxation time for interacting electrons, is an important quantity
to study transport and tunneling properties of the system [16–17].

Inelastic scattering rate of quasiparticles in a single quantum
layer at zero and finite temperatures, has been studied, in detail
[17–25]. Zheng and Das Sarma [18] showed that the so-called GW

method for calculating electron self-energy is able to address the
lifetime measurements by Murphy et al. [17]. At the same time,
Jungwirth and MacDonald came up with similar calculations
which were able to address the experimental results, very well
[19]. Sharma and Ashraf considered the electron–electron scat-
tering in the presence of a random disorder potential in a two-
dimensional degenerate electron gas (2DEG) system, computa-
tionally, and showed that quasi-particle Fermi liquid theory can be
applied to such a system [22]. Using the same theoretical method
i.e. the random phase approximation (RPA), Vazifehshenas and
Salavati-fard have investigated quantum size effect on inelastic
scattering rate in a single quantum layer, at finite temperature
[23]. The calculations showed that the infinitely deep quantum
well, as a simple model for 2DEG, is able to reproduce the results
of bulk system [26] at large thickness limit [23]. Moreover, by
employing the STLS and the temperature-dependent Hubbard
approximations, they have studied the local field corrections on
the electron–electron scattering lifetime in a 2DEG system, at fi-
nite temperature [24,25].

Zheng and Das Sarma calculated inelastic scattering rate in a
DQW at zero temperature [27]. They studied contributions from
quasi-particle, acoustic and optical plasmon excitations to calcu-
late the total scattering rate. In another theoretical work, Reizer
and Wilkins tried to address experimental measurements of in-
elastic scattering rate in a DQW at finite temperate [17] by using
the golden-rule method and including the nongolden-rule
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contribution of the same order in the interaction [28]. While their
theoretical work was not in a good agreement with the experi-
ment, it still provided a useful insight about the problem. Finally,
Jungwirth and MacDonald presented calculations for the dc tun-
neling conductance between coupled two-dimensional clean
electron gases at finite temperature and found an excellent
agreement with the experiment [19]. Vortex corrections to RPA
were considered in this work, as well. It is worth pointing out that
the lifetime measurements by Murphy et al. were based on tun-
neling experiment in a DQW structure [17].

In the work presented here, by employing the RPA for dyna-
mical dielectric function of the interacting system, we study geo-
metry effects on inelastic scattering rate due to quasiparticles in a
DQW system, at finite temperature.

The rest of the paper is structured as follows: in the next sec-
tion, theoretical formalism for calculating inelastic scattering rate
is presented and the model we use for a DQW is described. Nu-
merical results are given and discussed in Section 3 which is di-
vided into two subsections: the well separation effects and the
thickness effects. Finally, the highlights of this work are summar-
ized in the last section.

2. Theoretical formalism

We consider an n-doped GaAs-based DQW structure and cal-
culate geometry effects on the intra-layer inelastic scattering rate
due to quasi-particles by making use of the GW method, at finite
temperature. We assume that electrons are limited to the first sub-
band in either layer and scattering does not change their sub-band
index. Moreover, since we are interested in pure electronic effects,
this study is limited to the low temperature and fast electron re-
gime, so that we could disregard phonons and impurities, re-
spectively [18].

In the original GW method, the electron self-energy, Σ, can be
calculated using the dressed Green function, G, and the screened
interaction, W [29]. As an approximation to this method, the non-
interacting Green function, G0, is replaced for the dressed Green
function in the GW expression for Σ. This approximation has been
extensively used to calculate the electron self-energy in many-
body problems.

In the Matsubra formalism the electron self-energy within the
GW approximation at finite temperature can be calculated as [29]:
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1 , ν is the volume of electron gas and i is the layer

index. Also, ω π β= ( + ) ℏn2 1 /n , ν π β= ( ) ℏn2 /n and n is an integer
number. The non-interacting Green function is defined as
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T T/F being the dimensionless chemical poten-
tial. Furthermore, *m represents the conduction band electron
effective mass, EF and TF are Fermi energy and temperature, and
Wii is the dynamically screened intra-layer electron–electron in-
teraction which is given, at finite temperature, as [30]:

( )
ω

χ ω χ ω

ε ω
( ) =

− ( ) ( ) ( ) + ( ) ( )

[ ( )] ( )
W q T

v q q T v q v q q T

q T
, ,

1 , , , ,

det , , 2
ii

jj jj jj ji ii
0 2 0

where the determinant of dynamical dielectric matrix within the
RPA is calculated as the following:
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It is worth mentioning that the RPA, which considers the long-
range Coulomb interactions and ignores the short-range exchange-
correlation effects, is exact in the high electron density limit. For
systems with low electron density in which the short-range inter-
actions are important, it is necessary to include local field corrections
to the RPA to have a reliable dielectric function [29].

It is common to use the dimensionless density parameter, rs, for
the electron density. This quantity is defined as the average dis-
tance between non-interacting electrons in the system. For a
2DEG, the dimensionless density parameter is calculated as

π= ( * )r a n1/s B in which n is the electron density and *aB is the ef-
fective Bohr radius. It is quite reasonable to include local field
corrections to the RPA for >r 1s .

In Eq. (3), χ0 is the density–density response function in the
non-interacting electron system for which the analytical expres-
sions, at finite temperature, are given elsewhere [31]. Also, =v vii jj

( =v vij ji) is the unscreened electron–electron intra-layer (inter-
layer) potential. The Coulomb interaction matrix elements could
be found from the following equation:
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where κ is the dielectric constant of the host semiconductor, d is
the center-to-center well separation in DQWand Fij is a form factor
matrix element which includes information about the geometry of
the system. The form factor matrix elements are, in general, de-
fined as:
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with Ψi being the envelope function of ith quantum layer.
We model a DQW structure as two parallel infinitely deep

square quantum wells with thickness L which are separated from
each other by spacing d. For such a system, the envelope functions
are known and the intra- and inter-layer form factors (diagonal
and off-diagonal elements of the form factor matrix) could be
analytically derived as [23,31]:

π
π

π
π

( ) = ( ) + ( )
( ) +

− [ − ( − )]
( ) ( + ) ( )

F qL
qL qL
qL

exp qL
qL q L

3 8 /
4

32 1
4 6

ii

2

2 2

4

2 2 2 2 2

( )
π

π
( ) = ( )

( ) +
(− )

( )
F qL

qL

qL q L
qd

64 sinh /2

4
exp

7
ij

4 2

2 2 2 2 2

One is able to calculate the intra-layer inelastic scattering rate
for electrons with momentum k and unscreened energy ξk, which
is measured with respect to the Fermi level of ith layer
(ξ = * −k m E/2k F

2 ), as the following (ℏ = 1) [18]:
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where fB and fF are the Bose–Einstein and the Fermi–Dirac dis-
tribution functions, respectively.

3. Results and discussions

It is well known that in an interacting electron system, quasi-
particles, acoustic and optical plasmons contribute to inelastic
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