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a b s t r a c t

In the two-dimensional electron gas (2DEG), the system can be polarized by metal ions on the 2D surface,
resulting in screening of Coulomb interaction between electrons. We calculate the 2D screened Coulomb
interaction in Thomas–Fermi approximation and find that both electron–hole (e–h) and collective ex-
citations occurring in the 2DEG can be described with the use of effective dielectric function, in the
random-phase approximation (RPA). In this paper we show that the mode proportional to in-plane
momentum, called acoustic surface plasmon (ASP), can appear in long-wavelength limit. We calculate
ASP dispersion and determine the critical wave number and frequency for the ASP decay into e–h pair,
and the velocity of ASP. Our result agrees qualitatively with previous ones in tendency.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Low energy surface plasmon by collective motion of the surface
of noble metals, such as Ag, Au and Cu, has been attracted long
before because of its potential application in sensing, imaging,
surface enhanced spectroscopy and catalysis [1].

In the two-dimensional electron gas (2DEG) the plasmon fre-
quency ω is proportional to ∥q for small in-plane momentum ∥q

[2]. The � ∥q dispersion makes a distortionless propagation of
nonmonochromatic signals inherently impossible, since the dif-
ferent frequencies components propagate at different velocities.
This drawback can be overcome using a plasmon energy with a
linear rather than a square root dispersion [3]. Such a mode, called
an acoustic surface plasmon (ASP), was observed for a variety of
noble and simple metal surface [4–8], and also for graphene grown
on a metallic substrate [9,10]. The detail of ASP has been studied
theoretically [3,11–16].

The ASP energy ωASP varies as [11]

ω α= ( )∥v q , 1ASP F
D2

for small in-plane momentum ∥q with ω → 0ASP as →∥q 0, where

vF
D2 is the 2D Fermi velocity and the coefficient α is only slightly

larger than unity.

In this paper, we have shown that the appearance of ASP can be
explained by taking into account the static Coulomb screening
between the electrons on the bare metal surface. We have also
calculated the critical frequency and the velocity of ASP comparing
them with previous results.

2. Model

We consider a simplified model in which electrons comprise
2 DEG. The electrons of the 2 DEG move in a rather complicated
potential. The periodic potential of the metal is represented in the
effective-mass approximation in order to smooth out the micro-
scopic structure of the metal. We use the simplest version of the
effective-mass approximation where the electrons are assumed to
have the mass which is characteristic of the conduction band
minimum at the Brillouin zone center (Γ) neglecting non-
parabolicity and coupling band extreme. On this potential the re-
latively slowly varying potential is superimposed. According to
symmetry of the problem the electron motion is quasi-free in the
x–y plane with the wave vector component ∥k and the energy

ℏ ∥ mk /2 D
2 2

2 , where m D2 is the effective mass of the conduction
electron.

This system can be considered to form a 2D state band with a
2D Fermi energy εF

D2 . Within this model, one finds that both
electron–hole (e–h) and collective excitations occurring within the
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2 DEG can be described with the use of a 2D dielectric function,
which in the random-phase approximation (RPA) takes the form
[11]:

ε ω χ ω( ) = − – ( ) ( ) ( )∥ ∥ ∥q U q q, 1 , , 2eff
D

D
2

2
0

where – ( )∥U q is the 2D Fourier transform of the screened Coulomb

interaction and χ ω( )∥q ,D2
0 is the polarization function of a homo-

geneous 2 DEG [2]. For the discussion of the collective excitations
it is necessary to consider the screened Coulomb interaction – ( )∥U q

and the polarization function χ ω( )∥q ,D2
0 in detail.

3. The screened potential

At the 2 DEG electrons can be scattered by electron–electron
interaction (bare Coulomb interaction). Since the 2 DEG is polar-
izable, this bare interaction is screened.

We calculate this screened potential in Thomas–Fermi ap-
proximation. When we consider an electron in 2D system(x–y
plane) 3D potential by induced charge resulting from the electron
and the system polarization obeys the following Poisson equation:

ϕ π δ π δ▽ ( ) = − ( ) − ( ) ( ) ( )∥e en r zr r4 4 , 3eff
D

D
2 3

2

where ∥r is the 2D position coordinate in the x–y plane. The ap-
plication of Thomas–Fermi approximation yields:

ε ϕ
ℏ ( )

= − ( )∥
∥

k r
m

e r
2

,F

D
F

D
eff

D
2 2

2

2 2

and since sheet electron concentration is π ε π= = ℏn k m/2 /D F D F
D

2
2

2
2 2,

we obtain:

π
ϕ( ) = −

ℏ
( )∥ ∥n r

em
r .D

D
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D
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2
2
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After substituting the above expression into Eq. (3), performing
Fourier transformation lead to:

( ) ( )ϕ π ϕ+ = − ( ) ( )∥ ∥ ∥q q q q e q q, 4 2 , 4z eff
D

z D eff
D2 2 3 2

with

= ℏq m e2 / .D D2
2 2

The 2D effective potential is calculated from Eq. (4) using the
following iterative method: In 0th approximation, neglecting the
attribution from induced charge, we have

ϕ π( ) =
+

( )
∥

∥

q q
e

q q
,

4
.eff

D
z

z

3 0
2 2

The Fourier transformation of qz into coordinate representation
gives:

∫ϕ
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Putting =z 0 in the above expression we obtain the following
bare Coulomb potential:

ϕ ϕ π( ) = ( ) =
( )

( )
∥
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In next approximation substituting Eq. (5) into Eq. (4), and
calculating in the same way, we have
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Repeating this, the resulting 2D screened Coulomb potential is

obtained:
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From the above expression screened Coulomb interaction has
the type

π¯ ( ) =
+ ( )

∥
∥

U q
e

q q
2

.
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4. The polarization function and 2D dielectric function

In the RPA the polarization function takes the form [2]:

∑χ ω
ω ε ε

( ) =
−

ℏ − + + ( )
∥
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+
+
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where the factor 2 is the sum versus spin variable of the electrons
and A the area of x–y plane. ε = ℏ ∥∥ mk /2 Dk

2 2
2 is energy of a electron

with 2D effective mass m D2 , ε = ℏ k m/2F F D
2 2

2 is the Fermi energy
(chemical potential) and ∥fk denotes the Fermi distribution function
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For simplicity we want to discuss the polarization function in
the zero-temperature limit. In this case the Fermi distribution
function has simple form θ= ( − | |)∥∥f k kFk with the Fermi wave

vector π= ( )k n2F D2
1/2 and the unit step function θ ( ) =x 1 for >x 0

and θ ( ) =x 0 for <x 0. From the polarization function given by Eq.
(7) one derives for the real and imaginary parts of the χ ω( )∥q ,D2

0
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Herein = ℏv k m/F F D2 denotes the Fermi velocity and
( ) = +xsgn 1 for >x 0 and −1 for <x 0.
Metal surface, such as Au(111), Ag(111) and Cu(111), can be con-

sidered to form a 2DEG with a 2D Fermi energy εF
D2 (see Table 1 [14]).

Fig. 1 exhibit 2D dielectric function determined by Eqs. (2), (6),
(8) and (9) corresponding to the (111) surfaces of Au, Ag and Cu.
The real and imaginary parts of ε ω( )∥q ,eff

D2 are represented by dash-
dotted and dashed line, respectively. The solid lines represent the
effective 2D energy-loss function π ε ω− [ ( )]∥q1/ Im 1/ ,eff

D2 . Here, we
used the parameters of Table 1. In Fig. 1, (a), (b), (c) correspond to

=∥
−q a0.02 0

1, =∥
−q a0.04 0

1, = =∥
−q q a0.058C 0

1 on Au(111) surface,

(d), (e), (f) to =∥
−q a0.01 0

1, =∥
−q a0.02 0

1, = =∥
−q q a0.029C 0

1 on Ag
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