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a b s t r a c t

We report on complex magnetization dynamics in a forced spin valve oscillator subjected to a varying
magnetic field and a constant spin-polarized current. The transition from periodic to chaotic magnetic
motion was illustrated with bifurcation diagrams and Hausdorff dimension – the methods developed for
dissipative self-organizing systems. It was shown that bifurcation cascades can be obtained either by
tuning the injected spin-polarized current or by changing the magnitude of applied magnetic field. The
order–chaos transition in magnetization dynamics can be also directly observed from the hysteresis
curves. The resulting complex oscillations are useful for development of spin-valve devices operating in
harmonic and chaotic modes.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Nano-scale magnetics attracted a considerable scientific at-
tention, largely fueled by the discovery of the giant magnetore-
sistance [1,2] that was instrumental for significant increase of in-
formation storage density [3,4]. The elementary spintronic device,
a spin valve, features high sensitivity to magnetic fields and short
response time, which makes it promising for fast non-contact
magnetic sensor applications [5]. The injection of spin-polarized
current generates a spin torque [6] that produces a complex
magnetization precession [7–10]. The careful tailoring of external
influence in a form of pulsed fields and currents leads to a rich
variety of dynamic states displayed by a spin valve, including ultra-
fast reversal under pulsed magnetic field [11,12], steady magne-
tization precession and canted states [13], as well as complex
magnetization dynamics triggered with pulsing currents [14]. The
increase of device operation temperature [15] leads to stochastic
oscillations and chaotic states, which can be useful for generation
of true random numbers [16]. To increase power output of a
spintronic device, several nano-magnets can be synchronized,
leading to a variety of coupling effects [8,17]. It was shown that the
methodology developed for characterization of self-organizing
dissipative systems [18] can be successfully applied for study of

complex dynamic modes appearing in nano-magnetic systems
[19–21]. The accounting for such non-linear magnetic behavior is
important, as it may lead to spin wave instabilities [22], chaotic
vortex core reversal [23] and related phenomena.

In this paper, we report on cascades of period-doubling bi-
furcations occurring in a macrospin model describing magnetiza-
tion dynamics of a free layer in Co/Cu/Co spin-valve [7], subjected
to simultaneous action of a constant spin-polarized current and
periodic external magnetic field. We use bifurcation diagrams and
Hausdorff dimension as main tools to visualize the different
magnetic oscillation modes. We also show that period doubling
bifurcations are clearly detectable directly from the hysteresis
curves, which opens new perspectives for experimental observa-
tion of order–chaos transition in spintronic devices.

2. Theoretical model

To study magnetization dynamics in relatively large particles, it
is imperative to use micromagnetic simulations [24,25], dividing
the object into small domains that interact with each other.
However, dynamics of a thin free magnetic layer can be described
reasonably well in the framework of macrospin approximation
[9,26], when uniform magnetization rotation predominates in the
system [27]. The calculations made with macrospin model reveal
magnetization precession modes with the frequency distribution
closely related to the experimental data [7]. Moreover, the
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coherent magnetic rotation provides higher coercivity values in
comparison with curling and multi-domain states [28]. Therefore,
macrospin approximation became the main model considered for
the spin-torque oscillators [29,30]. The magnetization dynamics in
this case obeys the Landau–Lifshitz–Gilbert equation [31,32]:
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Here, γ is the gyromagnetic ratio, μ0 is the vacuum perme-
ability, MS is the saturation magnetization and α ξ( ) is the viscous
damping coefficient [32]. The last term in Eq. (1) corresponds to
the adiabatic spin torque proposed by Slonczewski [6] and Berger
[33], caused by the injected spin-polarized current and counter-
acting magnetization precession damping. The non-adiabatic [34]
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was not considered in this study be-

cause of its smallness in the model spin valve system due to
vanishing transverse magnetic coherence length [35,36]. As Eq. (1)
unconditionally preserves the longitude of magnetization vector, it
is useful to rewrite it in dimensionless variables for spherical co-
ordinate system defined by the angles θ and φ [37]:
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The reduced variables include: the time coefficient
τ α ξ γμ= [( + ( ) ) ( )]t H/ 1 / k

2
0 , the anisotropy coefficient =h K K/p p

(with easy axis and easy plane anisotropy constants K and Kp, re-
spectively), as well as dimensionless spin-current torque

η= ( ) ( )h J eVK/ 4s defined with spin-polarization degree η and the
volume of ferromagnetic body V. The applied field was normalized
over the uniaxial anisotropy =H K M2 /k S. We used material para-
meters for cobalt [28], with =K 10 kOep and =H 500 Oek [7]. To
replicate the experimental setup, the free layer of a spin valve was
considered to be a thin elliptic cylinder 130�70 nm2 in cross-
section and 3 nm thick [7]. To improve model accuracy, we used
the enhanced angle-depending formula for the damping coeffi-
cient α α ξ ξ= ( + + + ⋯)q q10 1 2

2 as proposed by Tiberkevich and
Slavin [38]. The parameter ξ depends on orientation of magnetic
vector as
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The equilibrium value for Gilbert damping coefficient was
α = 0.0140 ; the coefficients q1,2 for Taylor series expansion were
considered equal to 0.5.

3. Results and discussion

Eqs. (2) and (3) were solved with Runge–Kutta method of the
fourth order [39] with integration step of 1 ps. The reduced

magnetization → =
→

m M M/ S was reconstructed from θ τ φ τ( ) ( ), as

θ φ θ φ θ= = = ( )m m msin cos , sin sin , cos . 5x y z

To trigger complex magnetization precession modes, we used
harmonic magnetic field π= ( )h h ftcos 20 varying with a frequency
f. Due to the complex nature of torque produced by h and hs, both
applied along z-axis, it was found that magnetization component
mz featured smaller amplitude in comparison with components mx

and my that are perpendicular to the direction of the field. Due to
this, we chose mx component for plotting the hysteresis curves.

To define parameter regions where magnetization precession
takes place, we calculated Hausdorff dimension [18]
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where N is the number of cubes with the side ε required to cover
the entire phase trajectory. As LLG equation describes magneti-
zation dynamics restricted to a sphere, the possible values of DH

vary between the unity (steady precession) to two (chaotic oscil-
lations covering the entire surface of the sphere). When the
combination of control parameters fails to excite precession, the
Hausdorff dimension tends to zero. Plotting the values of DH as a
function of h and hs for a given field frequency f, one can clearly
distinguish parameter regions corresponding to established mag-
netization precession from the parameter combinations for which
the system converges to a fixed stationary state (Fig. 1). We will
use the term “synchronization islands” to designate the areas in
parameter space for which magnetization precession is achieved.
The ranges of field frequency was chosen to include the char-
acteristic frequency of the system γμ α= ( ) ( + ) ≃f H / 1 9 GHzk0 0 0

2

and the doubled frequency =f2 18 GHz0 . As one can see from
Fig. 1, the synchronization islands include field-only regime
(hs¼0) and are “stacked” on top of each other along the h-axis. The
number of the islands of synchronized motion is larger for the
lower field frequencies, when magnetic moment can adjust to a
different oscillation phase of the driving field. With the increase of
f, the number of synchronization islands lowers but their area
grow due to phase-locking synchronization phenomena that are

Fig. 1. “Synchronization islands” revealed with Hausdorff dimension DH for magnetic field frequencies varying from 6 GHz (panel (a)) to 24 GHz (panel (g)). Panel (f) was
calculated for 20 GHz to illustrate an island located at >h 24, which is no longer observable at f¼21 GHz. The dark bars in panels (c) and (e) correspond to parameter ranges
used for the bifurcation diagrams shown in Figs. 2–4.
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