
Coupling of dynamical micromagnetism and a stationary spin
drift-diffusion equation: A step towards a fully self-consistent
spintronics framework

Michele Ruggeri c,n, Claas Abert a, Gino Hrkac b,c, Dieter Suess a, Dirk Praetorius c

a Christian Doppler Laboratory of Advanced Magnetic Sensing and Materials, Institute of Solid State Physics, TU Wien, Vienna, Austria
b College of Engineering, Mathematics and Physical Sciences, University of Exeter, UK
c Institute for Analysis and Scientific Computing, TU Wien, Vienna, Austria

a r t i c l e i n f o

Article history:
Received 29 May 2015
Received in revised form
25 August 2015
Accepted 1 September 2015
Available online 5 September 2015

Keywords:
Micromagnetism
Landau–Lifshitz–Gilbert equation
Spintronics
Finite element method

a b s t r a c t

We consider the coupling of the Landau–Lifshitz–Gilbert equation with a quasilinear diffusion equation
to describe the interplay of magnetization and spin accumulation in magnetic-nonmagnetic multilayer
structures. For this problem, we propose and analyze a convergent finite element integrator, where, in
contrast to prior work, we consider the stationary limit for the spin diffusion. Numerical experiments
underline that the new approach is more effective, since it leads to the same experimental results as for
the model with time-dependent spin diffusion, but allows for larger time-steps of the numerical in-
tegrator.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction and mathematical model

The classical theory of micromagnetism models the behavior of
ferromagnetic materials for constant temperature far below the
Curie point and in the absence of electric currents. To take the
interactions between magnetization and spin-polarized currents
into account, several extensions of the model based on the concept
of spin-transfer have been proposed [1–7]. In this work, we con-
sider the Landau–Lifshitz–Gilbert (LLG) equation
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where the sought vector field is the normalized magnetization
m: T

3Ω → with m 1= . In (1a), 3Ω ⊂ is the volume occupied by
some ferromagnetic body, T 0> is some finite time, and

T0,TΩ Ω= ( ) × is the time-space domain. Moreover, 00γ > is the
gyromagnetic ratio, 0α > is the Gilbert constant, and the effective
field is given by

CH m f m m f, . 1ceff exch π( ) = Δ + ( ) + ( )

In (1c), the first term is the exchange contribution, with

C A M2 / 0sexch 0μ= ( ) > , mπ ( ) collects the m-dependent lower-order
contributions (e.g., anisotropy field and stray field), and f com-
prises the m-independent contributions (e.g., applied external
field). In (1a), s: T

3Ω ′ → denotes the spin accumulation, 3Ω′ ⊂ is
the volume of a conducting body such that Ω Ω⊂ ′,

T0,TΩ Ω′ = ( ) × ′, and c 0> is the corresponding coupling constant.
The LLG equation is equipped with homogeneous Neumann
boundary conditions and initial conditions (1b) for some initial
state m :0 3Ω → with m 10| | = . The dynamics of the spin accu-
mulation s is governed by the diffusion equation [3,8]

D D
s J s s m

2 2
in ,

2a
t Ts

0

sf
2

0

J
2λ λ

Ω∂ = − ∇· − − × ′
( )

Ts 0 s son 0, , 0 in . 2bn
0Ω Ω∂ = ( ) × ∂ ′ ( ) = ′ ( )

Here, D0 denotes the diffusion coefficient, , 0sf Jλ λ > are char-
acteristic lengths and s :0 3Ω′ → is some initial configuration. The
spin current Js reads
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where J : Te
3Ω ′ → is a given electric current density and the

constants 0Bμ > , e 0> , and 0 , 1β β< ′ < are the Bohr magneton,
the electron electric charge, and polarization parameters, respec-
tively. The above setting covers the case of multilayer structures,
where Ω′ denotes the volume of the entire multilayer sample,

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/physb

Physica B

http://dx.doi.org/10.1016/j.physb.2015.09.003
0921-4526/& 2015 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail address: michele.ruggeri@tuwien.ac.at (M. Ruggeri).

Physica B 486 (2016) 88–91

www.elsevier.com/locate/physb
http://dx.doi.org/10.1016/j.physb.2015.09.003
http://dx.doi.org/10.1016/j.physb.2015.09.003
http://dx.doi.org/10.1016/j.physb.2015.09.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physb.2015.09.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physb.2015.09.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physb.2015.09.003&domain=pdf
mailto:michele.ruggeri@tuwien.ac.at
http://dx.doi.org/10.1016/j.physb.2015.09.003


while Ω denotes its ferromagnetic part (see Section 4).
Existence of weak solutions of the nonlinear system (1)–(2) has

been established in [8]. A first numerical scheme based on finite
differences has been proposed and empirically validated in [9]. A
convergent finite element integrator has been proposed, analyzed,
and applied by the authors in [10,11]. The latter scheme extends
the integrator of [12] and is unconditionally convergent towards a
weak solution of the system, although each time-step decouples
the integration of (1) and (2) and requires only to solve two linear
systems (despite the overall nonlinearities).

The dynamics of the spin accumulation is much faster than the
one of the magnetization [3]. If one is only interested in the
magnetization dynamics, it is thus reasonable to treat the spin
accumulation as in equilibrium, i.e., to consider the stationary case
of the governing diffusion equation. With this approach, (2a) re-
duces to the boundary value problem
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In the present work, as a novel contribution over [8–11], we
analyze the numerical integration of (1a) coupled to (3a). We
prove convergence of the algorithm towards a weak solution of
the problem and compare the numerical results with those for
(1)–(2). The latter is computationally more expensive, since it re-
quires a smaller time-step size in order to resolve the dynamics of
the spin accumulation.

2. Variational formulation and weak solution

We assume that D L0 Ω∈ ( ′)∞ satisfies D D0 ≥ * a.e. in Ω′ for a
positive constant Dn. For the moment, we omit the time-depen-
dence of all quantities, assume J H div,e Ω∈ ( ′), and consider the set

m L m: 1 a.e. inΩ Ω= { ∈ ( ) ≤ }∞ . For m ∈ , we define the bi-
linear form a H H:m
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for all H,1 2
1ζ ζ Ω∈ ( ′). The variational formulation of (3) then reads

as follows: find s H1 Ω∈ ( ′) such that, for all H1ζ Ω∈ ( ′), it holds
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The following proposition characterizes the mapping m s↦ .

Proposition 1. For all m ∈ , there exists a unique solution
s H1 Ω∈ ( ′) of (5). Moreover, it holds
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Proof. Recall m 1≤ a.e. inΩ. It follows that the bilinear form a ,m (· ·)
is continuous and coercive, as a D, min 1 ,m Hsf
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for all H1ζ Ω∈ ( ′). Moreover, F (·) defined as the right-hand side of (5)

is linear and continuous, as F e J/2
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1
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all H1ζ Ω∈ ( ′). Therefore, the result follows from the Lax–Milgram
theorem.□

We suppose C Tf L0, ; 2 Ω∈ ([ ] ( )) and C TJ H0, , div,e Ω∈ ([ ] ( ′)).
In the spirit of [13–15], we introduce the notion of a weak solution
of (1a) coupled to (3a):

Definition 2. Let m H0 1 Ω∈ ( ) with m 10 = a.e. in Ω. Then,
m: T

3Ω → is called a weak solution of the coupling of (1) and (3)
if the following properties (i)–(v) are satisfied:

(i) m H T
1 Ω∈ ( ) and m 1= a.e. in ΩT,

(ii) m m0 0( ) = in the sense of traces,
(iii) for a.e. t ∈ (0, T) s(t) ∈ H1(Ω0)satisfies (5)
(iv) for all H T
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where the constant C 0> depends only on the data.

We point out that stronger (dissipative) bounds than (6) in
terms of the Gibbs free energy require additional assumptions on
π and f; see [14,15].

3. Numerical algorithm

For the spatial discretization, let h h 0{ }Ω′
> be a quasi-uniform

family of conforming tetrahedral triangulations of Ω′ with mesh-
size h. We assume that Ω is resolved, i.e., the restriction

K K:h h Ω= { ∈ ⊆ }Ω Ω′ satisfies KK h
Ω = ⋃ ∈ Ω . We denote by

Vh h
1 3Ω( ′) = ( )Ω′ the standard finite element space of globally

continuous and piecewise affine functions from Ω′ to 3 and define
Vh Ω( ) analogously. The set of vertices of the triangulation h

Ω is
denoted by h

Ω. We define the set of admissible discrete magne-
tizations by

V z z: 1 for allh h h h hϕ ϕΩ≔{ ∈ ( ) ( ) = ∈ } ⊂Ω

and consider, for h hϕ ∈ , the discrete tangent space

V z z z: 0 for all .h h h h hh ψ ψ ϕΩ≔{ ∈ ( ) ( )· ( ) = ∈ }ϕ
Ω

We note that these definitions are inspired by mimicking the
properties m 1| | = and m m m 0t t

1
2

2·∂ = ∂ | | = a.e. in ΩT which are
satisfied for each solution m of (1a).

For the time discretization, we consider a uniform partition of
the time interval T0,[ ] with time-step size t T N/Δ = , i.e., t i ti = Δ
for i N0 ≤ ≤ . Algorithm 3 approximates tm mi h

i
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as tm vt i h
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Proposition 1, shows that (7) is well-posed and that s Vh
i
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