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a b s t r a c t

Magnetization dynamics in uniformly magnetized particles subject to time-harmonic (AC) external fields
is considered. The study is focused on the behavior of the AC-driven dynamics close to saddle equilibria.
It happens that such dynamics has chaotic nature at moderately low power level, due to the heteroclinic
tangle phenomenon which is produced by the combined effect of AC-excitations and saddle type dy-
namics. By using analytical theory for the threshold AC excitation amplitudes necessary to create the
heteroclinic tangle together with numerical simulations, we quantify and show how the tangle produces
the erosion of the safe basin around the stable equilibria.

& 2015 Elsevier B.V. All rights reserved.

Magnetization dynamics in uniformly magnetized nano-
magnets subject to time-harmonic (AC) fields has been tradition-
ally studied in connection with ferromagnetic resonance [1]. In
this situation, AC fields produce small magnetization oscillations
around a stable equilibrium and the response of the system de-
pends on the frequency of the excitation following, in the linear
regime, the classical resonance curve peaked around the Kittel
frequency [2]. Since magnetization dynamics is usually weakly
dissipative, nonlinear effects can be excited at moderately large
powers, which can give rise to hysteretic (bistable) resonance re-
sponse owing to the fold-over effect [3].

In this paper, we investigate the effects of time-harmonic ex-
ternal fields in a wider region of the state space. In particular, we
are interested in the regions around saddle-type equilibria which
are usually at the top of the potential wells. The motivation for
studying such an unstable region is connected with the fact that
saddle equilibria and the associated heteroclinic/homoclinic
manifolds connecting the saddles, usually termed separatrices,
constitute the boundaries of basins of attraction of different at-
tractors (asymptotic regimes). It turns out that the AC perturba-
tions of the dynamics in the vicinity of saddle equilibria give rise to
phenomena incomparably more complex than those observed
close to a stable equilibrium.

These complex phenomena are due to the possibility that the
homoclinic/heteroclinic manifolds, for sufficiently large AC ex-
citations, may intersect infinitely many times forming a structure
referred to as homoclinic/heteroclinic tangle which may lead to
separatrices which have a fractal geometrical nature. As a con-
sequence, the magnetization dynamics starting inside an energy
well may, at later time, escape the well. This mechanism is called
basin erosion and starts in the vicinity of the saddle equilibria and
the associated homoclinic/heteroclinic cycles [4].

The purpose of this paper is to investigate the connection be-
tween the aforementioned tangling phenomena and basin erosion
for magnetization dynamics driven by AC external fields. In the
paper, magnetization dynamics is described by the Landau–Lif-
shitz (LL) equation. The external field is assumed to be purely si-
nusoidal with no bias. In these conditions, the entanglement of
saddle manifolds is of the heteroclinic type. The origin of hetero-
clinic tangle is first illustrated from the qualitative point of view.
Then, by using analytical formulas based on Melnikov function [5]
to characterize AC field amplitudes for the onset of the heteroclinic
tangle, we perform numerical simulations of the AC-driven mag-
netization dynamics suitable to introduce a measure for the phe-
nomenon of basin erosion. Finally, some remarks on the connec-
tion between basin erosion and microwave-assisted magnetization
switching are given.

The evolution of the magnetization M in a uniformly magne-
tized particle is described in terms of normalized vector
m M M/ s= , where Ms is the saturation magnetization and m 1| | = .
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The evolution of m on the unit sphere Σ is governed by the fol-
lowing generalized Landau–Lifshitz equation [6]:

m
m

d
dt

g g, 1α= × ∇ − ∇ ( )Σ Σ

where ∇Σ is the gradient operator on the unit sphere, mg g t,= ( ) is
the free energy and α is the damping. We use normalized quan-
tities so that time is measured in units of Ms

1γ( )− , (γ is the gyro-
magnetic ratio), and the energy function g in units of M Vs0

2μ (μ0 is
the vacuum permeability and V the volume of the particle). The
free energy is given by the following expression:

m m h mg t g t, , 2ac0( ) = ( ) − ( )· ( )

where

mg D m D m D m /2, 3x x y y z z0
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Dx, Dy, Dz are effective anisotropy constants. The field h tac( ) in Eq.
(2) is the time-harmonic (AC) external field
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where e e e, ,x y z are the cartesian unit vectors, and where
h h h, ,ax ay az, , ,x y zδ δ δ are the amplitudes and phases of the cartesian
components of h tac( ), respectively.

In most situations of practical and physical interest, it happens

that h h h h h, 1ac ac ax ay az
2 2 2α ⪡ ( = + + ). This leads to the following

perturbative form of Eq. (1):

m
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t t

d
d

, , , , 50 1ε ε= ( ) + ( ) = ( ) ( )

where v m m mg0 0( ) = × ∇ ( )Σ is the unperturbed Hamiltonian vector
field and v m m h mt t g t, ,ac1ε α( ) = − × ( ) − ∇ ( )Σ . The parameter ε is
formally introduced in preparation of a perturbation analysis of
the dynamics based on the assumption that 1ε⪡ . One can interpret
ε as a parameter which controls the amplitude of all small quan-
tities in the problem, and more specifically, the amplitude of AC
excitations. In the form (5), the equation governing magnetization
dynamics is a perturbed Hamiltonian dynamics on the unit sphere
with Hamiltonian given by the function mg0( ).

The non-autonomous dynamical system (5) can be analyzed by
introducing the stroboscopic map [7]:

m mP , , 6n n1 ε= [ ] ( )+

where m m t nTn 0= ( + ), and T 2 /π ω= , which maps an initial
magnetization m t0( ) to the magnetization m t T0( + ) obtained by
integrating Eq. (5), over a time interval equal to T. Notice that the
stroboscopic map (6) is a time-discrete dynamical system and thus
its trajectories are sequence of points on Σ. Analytical treatment of
P[·] is based on the following Taylor expansion:

P P
P

m m m, , 0 , 0 . 7n n n
2ε

ε
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∂
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The zero order term of the expansion gives the unperturbed map
whose trajectories are curves with constant value of mg0( ) which
can be determined in closed form [6]. This implies that the saddles
of the unperturbed map P m , 0n[ ] coincide with the saddle equili-
bria associated with the vector field v m0( ). The qualitative features
of the phase portrait of v m0( ) are represented in Fig. 1(a) in cy-
lindrical coordinates m, zϕ( ). The two saddles xd1 and xd2 are
connected through heteroclinic trajectories, which are invariant
sets of the map P m , 0n[ ]. We recall that an invariant set A of a map
P[·] is such that P A A[ ] ⊆ . Heteroclinic trajectories are typical only
in conservative systems and they are not structurally stable with
respect to generic perturbation of the system. For this reason, they

are immediately destroyed when nonconservative perturbations
set in. On the other hand, saddle fixed points are structurally
stable entities [7] and thus are preserved under small perturba-
tions. In the perturbed case, two invariant curves originate from
each saddle of the map: the stable manifold Ws and the unstable
manifold Wu [7]. In Fig. 1(b) the two manifolds Ws

1 ε( ) and Wu
2 ε( ) are

sketched and their separation (splitting) is indicated by d. This
splitting depends on the nature of perturbation and may vanish
for sufficiently large AC perturbations. When this occurs, a point of
intersection xa belonging to both invariant set Ws

1 ε( ) and Wu
2 ε( ) is

realized (see Fig. 1(c)). This implies that forward and backward
iterates of P[·] starting from xa must belong to W Ws u

1 2ε ε( ) ∩ ( ) and
thus that the two curves, Ws

1 ε( ) and Wu
2 ε( ), must intersect an in-

finite number of times (see Fig. 1(c)). This phenomenon is referred
to as heteroclinic tangle and it is at the origin of chaotic and un-
predictable dynamic behavior of the system near the saddles. In
order to find when this occurs, one must be able to compute the
splitting d of Ws

1 ε( ) and Wu
2 ε( ). By using the expansion (7), the

Fig. 1. Qualitative sketches of the separatrices associated to the stroboscopic map
(see Eq. (6)) in the m, zϕ( )-plane (where ϕ is the azimuth around the z-axis).
(a) Unperturbed case; (b) damping dominated dynamics; and (c) heteroclinic
tangle formation. Legend: x x,d d1 2ε ε( ) ( ) saddle equilibria; x x,s s1 2ε ε( ) ( ) node-type
equilibria; Ws

1 ε( ) stable manifold associated with xd1 ε( ); Wu
2 ε( ) unstable manifold

associated with xd2 ε( ); d splitting of the manifolds; Γ heteroclinic trajectory, and
,1 4Γ Γ… constant energy trajectories. The points x x x, ,a b c are generated by iterating

the stroboscopic map.
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