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a b s t r a c t

A method is proposed to numerically solve the inverse problem of reconstructing phonon density of
states g(ω) based on the experimental heat capacity C(T). A feature of this method is that, at the initial
step, we calculate the g(ω) behavior at low and cutoff frequencies. The method is considered for several
model objects of varying complexity. The phonon density of states of copper has been calculated and
compared with published data. Analysis demonstrates that up to three peaks can be distinguished in g
(ω) with correct description of their shapes. The new method can be used for a widest class of solids
provided that very precise data on C(T) in a wide range of low temperatures are available.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The phonon density of states g(ω) is one of the most important
characteristics of a solid. Determination of information on g(ω)
plays a key role in the study of various phenomena in solids. The
phonon density of states can be determined using various meth-
ods [1–13], with the most important approach based on neutron
scattering [1–3]. Information on g(ω) can also be obtained from
theoretical investigations [4–10]. Here the most common is the
method of lattice dynamics [4–8]. Various approaches for obtain-
ing information on g(ω) also exist that include both theoretical
and experimental techniques [11–13].

The work [14] for the first time considered an approach related
to determination of the phonon density of states for a Bose system
from its heat capacity, based on the possible existence of stable
solutions to inverse problems [15]. Since then, various methods to
solve this problem have been suggested [16–25]. All these solu-
tions share the use of Tikhonov regularizing operators [16–21] or
rapidly decaying functions [22–24]. In Ref. [25] the maximum
entropy and reverse Monte Carlo methods are applied to the
computation of the phonon density of states from heat capacity
data. The diversity of approaches to reconstruct density of states g
(ω) from heat capacity demonstrates that a search for simple
methods to solve this problem still continues. This is due to the
current lack of a method that would allow reconstructing g(ω) in

practice for a wide range of substances.
This work suggests a new approach to determine the phonon

density of states from heat capacity data. An important feature of
this approach is consideration, at the initial step of the calculation,
of g(ω) in the regions of low and cutoff frequencies.

2. The phonon density of states from the heat capacity

The solution of the above problem first of all requires highly
accurate experimental data on heat capacity obtained in a wide
low-temperature range. The phonon density of states g(ω) of so-
lids, which characterizes the ground state of a crystal lattice (T¼0),
is related to heat capacity at constant volume CV(T). Therefore,
before attempting to solve the mentioned problem, it is first ne-
cessary to correctly and accurately extract the component that is
obtained in experiment from heat capacity at constant pressure CP
(T). We shall use the denotation C(T)≡CV(T) further in the text.

The calculation of the phonon density of states using the sug-
gested approach can be divided into three steps. At the first step
asymptotic characteristics of g(ω) are found, i.e., a zero approx-
imation g0(ω) is chosen that correctly describes the behavior of g
(ω) at ω-0 and ω-ωc (where ωc is cutoff frequency). The choice
of g0(ω) is made so that it describes well the asymptotic behavior
of heat capacity (at T-0 and T-1). At the second step the ap-
proximate description of g(ω) related to the use of the zero ap-
proximation g0(ω) is improved by a certain redistribution of the
number of vibrational modes over frequency. This redistribution of
modes is performed iteratively using a method, which, by stepwise

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/physb

Physica B

http://dx.doi.org/10.1016/j.physb.2015.07.013
0921-4526/& 2015 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: vn@niic.nsc.ru (V.N. Naumov),

musikhin@niic.nsc.ru (A.E. Musikhin).

Physica B 476 (2015) 41–49

www.elsevier.com/locate/physb
http://dx.doi.org/10.1016/j.physb.2015.07.013
http://dx.doi.org/10.1016/j.physb.2015.07.013
http://dx.doi.org/10.1016/j.physb.2015.07.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physb.2015.07.013&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physb.2015.07.013&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physb.2015.07.013&domain=pdf
mailto:vn@niic.nsc.ru
mailto:musikhin@niic.nsc.ru
http://dx.doi.org/10.1016/j.physb.2015.07.013


changing the shape of the zero approximation density of states,
ultimately results in a decreased difference between the calculated
and experimentally obtained heat capacity (using the method of
least squares). It should be noted that taking into account the
asymptotic behavior of C(T) at high temperatures at the initial step
of calculating g(ω) is an important factor, since it significantly
reduces the degree of ill-posedness of the problem being solved,
and allows arranging a converging iterative process. At the third
step, we calculate the density of states by averaging a number of
spectra obtained using various calculation parameters. This re-
duces considerably the random error in specific solutions. More-
over, these results together with possible implementations can be
used to determine the degree of uncertainty of the solution.

2.1. Choice of zero approximation

A general relation between the heat capacity at constant vo-
lume C(T) of a solid and its phonon density of states g(ω) is as
follows:

C T Nk g T d3 , , 1B
0

∫ ω Ψ ω ω( ) = ( ) ( ) ( )
∞

where

x
x e

e
x

k T1
, ;

x

x B

2

2
Ψ ω( ) =

( − )
= ℏ−

−

and where Ψ(x) – the Einstein function, N – the number of atoms,
kB – the Boltzmann constant, ħ – the Planck's constant. Function g
(ω) in expression (1) is normalized to unity:
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Since vibrational characteristics of a crystal are related only to
the lattice component of heat capacity, which amounts to 95% or
more of the total heat capacity of solids in the overwhelming
majority of situations, accurate information on the temperature
dependence of this component is required. Thus, when re-
constructing the phonon density of states from heat capacity data,
all other heat capacity components, i.e., electronic, anharmonic,
magnetic, if present, etc., have to be correctly accounted for and
subtracted.

The functional dependence of heat capacity C(T) of solids in the

vicinity of zero and at high temperatures is substantially de-
termined by asymptotic characteristics of the phonon density of
states g(ω), which can be determined from heat capacity data at
low and high temperatures, respectively.

It is well known that heat capacity of any solid, starting from
some sufficiently low temperature Т0, obeys the Debye law:
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where ΘD(0)¼ħω0/kB, and ω0 is the cutoff frequency of the Debye
model, with the phonon density of states in the low frequency
range being proportional to frequency squared g(ω)–ω2. There-
fore, heat capacity experiments below T0 can yield the parameter
ω0, which is related to Debye temperature at zero ΘD(0), and thus
the dependence g(ω) at low frequencies.

At high temperatures, where a high temperature expansion of
function (1) over even moments of g(ω) is valid (see, e.g., Ref.
[26]), the heat capacity is substantially determined by the cutoff
frequency of the phonon spectrum g(ω). This cutoff frequency is
close to the limiting moment of g(ω) and can be determined using
the technique described in Ref. [26,27]. The cutoff frequency can
also be estimated from the dependence of the Debye temperature
ΘD(T) at T-1. If the general features (the shape) of g(ω) are
known, the cutoff frequency can be readily and accurately found
by varying the scale of the frequency axis for g(ω). The criterion
for choosing the cutoff frequency in this case is the coincidence of
the original heat capacity with heat capacity calculated from ex-
pression (1) at high temperatures. Thus, the functional behavior of
C(T) at high temperatures can be used to find (or estimate) the
cutoff frequency of the phonon spectrum.

In view of the above, an approximation of the experimental C
(T) curve with its correct asymptotic description (at T-0 and T-
1) can be achieved using function g0(ω) shown in Fig. 1. This
function g0(ω) is obtained by transforming the Debye spectrum
(see Fig. 1, dashed line) with characteristic frequency ω0 de-
termined from the requirement of correct description of C(T) in the
vicinity of zero. Parameter ω2, having the meaning of the new
phonon cutoff frequency, is determined from the requirement of
correct asymptotic description of C(T) at high temperatures.
Parameter ω1 provides an upper limit to the frequency range in
which function g0(ω) is described by the Debye model, and is

Fig. 1. Function g0(ω) (painted region) with parameter α¼1 (left) and α¼½ (right).
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