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a b s t r a c t

The nonlocal correlation mechanism between excitonic pairs is considered for a two dimensional exciton
system. On the base of the unitary decomposition of the usual electron operator, we include the electron
phase degrees of freedom into the problem of interacting excitons. Applying the path integral formalism,
we treat the excitonic insulator state (EI) and the Bose–Einstein condensation (BEC) of preformed ex-
citonic pairs as two independent problems. For the BEC of excitons the phase field variables play a crucial
role. We derive the expression of the local EI order parameter by integrating out the phase variables.
Then, considering the zero temperature limit, we obtain the excitonic BEC transition probability function,
by integrating out the fermions. We calculate the normal excitonic Green functions for the conduction
and valence band electrons and we derive the excitonic spectral functions, both analytically and nu-
merically. Different values of the Coulomb interaction parameter are considered.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Coulomb interaction between the electrons and holes gives
rise to a very rich physics related to the excitonic systems. The
excitons, as composite objects [1] with a total zero spin, have a
tendency to condense at the very low temperatures, and this is
shown for the first time in the sixties of the past millennium [2–4].
In general, the Bose–Einstein condensation (BEC) of excitons and
the formation of the excitonic insulator (EI) state are considered as
the same in the existing literature [5–13]. The EI state is a new
phase, which develops in the scenario of semimetal (SM)–semi-
conductor (SC) phase transition, when approaching the transition
from the SC side [4,14]. As it is shown in Refs. [5–7], the EI order
parameter is non-null for a given interval of the Coulomb inter-
action parameter and for a given value of the valence band hop-
ping amplitude. From the interpretation of the results given there,
it follows that in the small interaction region, the system is in the
Bardeen–Cooper–Schrieffer (BCS) state [15] with a very weak
binding energies of electron–hole pairs, contrary, when ap-
proaching from the SC side of the EI state, the system shows BEC
behavior with tightly bound excitons [8,16], thus exhibiting a BCS-
BEC type crossover [5–7,17]. As we mentioned above, in all cited
works here, the exciton condensation occurs at the same

temperature, as the EI phase transition. It is worth to indicate that
the coherence is discussed there in the sense of the direct binding
between electrons and holes, without dealing with the phase
variables of the quasiparticles.

However, a series of recent theoretical works suggest the im-
portance of the phase correlations on the phase transition scenario
in the excitonic systems [18–23]. Particularly, in Refs. [18,19], it is
shown theoretically that the EI state and the excitonic BEC are not
exactly the same. The importance of the phase coherence in the
excitonic pair plasma is discussed there, with a classification of
two distinct phase transitions in the excitonic plasma and the
discussion about the exciton BEC is provided. It is shown [18–
20,22,23] that in the low density limit of the excitonic pairs, the
critical temperature of excitonic BEC should be much smaller than
the temperature of the pair formation.

In the high e h− density limit we have the convergence of
theories, since in this case the transition lines of excitonic con-
densation and of that of the pair formation are coinciding. Indeed,
where the mean distance between the particles is shorter than the
excitonic Bohr radius, the weakly bound e h− pairs behave like the
Cooper pairs in the conventional superconductors at sufficiently
low temperatures [3,4,24]. In this case, the condensation is of the
BCS type. In Ref. [20], the authors employ the two-band Hubbard
model within the self-consistent t-matrix approximation to show
that in the low density limit the gas of free excitons undergoes the
BEC phase transition at the very low temperatures, and the BEC
temperature transition line is not coinciding with that of the pair
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formation. In fact, the BEC of the excitonic pairs is possible only
when the macroscopic phase coherence is present in the system
[18]. The EI state is an excitonium state, where the incoherent
e h− bound pairs are formed and furthermore, at the lower
temperatures, the BEC of excitons appears in consequence of re-
configuration and coherent condensation of preformed excitonic
pairs.

In the weak-coupling limit, the transition to e h− condensed
phase is related to the relative motion between electrons and
holes [20], which implies the BCS-like regime and is in contrast to
the case of strong-coupling, when the BEC state is related to the
motion of the center of mass of excitons. The e h− mass difference
in the BCS-BEC transition scenario leads to a large suppression of
the BEC transition temperature, which is proved to not be the
same as the excitonic pair formation temperature [20,22,23]. This
is in contrast with the previous treatments [5–13], where the EI
state is associated with the BEC state of excitons, as to be identical.
We treat the e h− system in the frames of (spinless) two-dimen-
sional (2D) extended Falicov–Kimball model (EFKM), as a purpo-
seful model, to include the f–f hopping mechanism that could be
also responsible for the exciton formation [9]. Using the electron
operator representation, we address the role of the phase factor in
the context of the interacting excitons. As a first step of the theory,
we obtain the EI order parameter by employing the functional
integration technique and we discuss the stability region (in the T-
U plan) of the exciton pair formation. Furthermore, at the zero
temperature limit, we integrate out the fermions and we discuss
the obtained phase action and the phase stiffness. We show that
the phase stiffness in the system is directly related to the exciton
condensation in the 2D excitonic system at zero temperature. We
calculate the phase stiffness parameter for different values of the f-
band hopping amplitude.

Then, turning to the phase sector, we employ the Bogoliubov
mean field displacement approximation, for the bosonic charge
variables and, hence, we separate the excitonic condensate part in
the e h− paired plasma (excitonium). Furthermore, we calculate
the exciton BEC transition probability, as a function of the attrac-
tive Coulomb interaction parameter U t/ , which is normalized to
the hopping integral of the conduction band electrons. By using
the Fourier space representation, we give the expressions of the
total normal Green functions for the f and c-band electrons and we
emphasize on the phase dependence of those functions. As a
consequence, we obtain the frequency dependent normal spectral
functions, at the zero temperature case and, furthermore, the
phase-coherent density of states (DOS). The numerical evaluations
of normal DOS functions, for the f and c band electrons, show a
gapless character of the spectrum of excitations, in contrast to the
traditionally admitted incoherent DOS behavior. We show that the
hybridization-gap is totally absent for all frequency modes and for
all values of the Coulomb interaction parameter. We argue that the
gapless behavior in the DOS spectra is a result of competition of
two independent excitations in the system: the phase fluctuations
and strong quantum coherence effects at zero temperature limit.
Note that a similar gapless character in the DOS spectrum of cold
excitons is observed recently in Ref. [25], where this effect is as-
sociated with metallic charge-density-wave phase and it is driven
by the strong electron correlations.

The paper is organized as follows. In Section 2, we introduce
the model Hamiltonian. The electron factorization and resulting
phase action are presented in Section 3. In Section 4, we get the
effective fermionic action for the EI state in the system. The nu-
merical results are presented there. In Section 5 we integrate out
the fermions and we obtain the phase stiffness parameter, both
analytically and numerically. In Section 6 we discuss the 2D ex-
citonic BEC at T¼0 and we calculate the ecxitonic BEC transition
probability function. Section 7 is devoted to the calculation of the

single particle spectral functions and density of states. At the end
of Section 7 we give the numerical evaluations for DOS functions
and we discuss the obtained results. Meanwhile, an experimental
technique is proposed to prove directly the DOS behavior. Finally,
in Section 8 we give a conclusion of our results. The theoretical
calculation of the phase action is given in the Appendix.

2. The method

2.1. EFKM Hamiltonian

The Hamiltonian of the spinless EFKM model is given by
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Here, the operator x r¯ ( ) (x r( )) creates (annihilates) an f or c electron
at the lattice position r, the notation x̃ in the last term in Eq. (1)
means the orbital opposite to x, the summation r r,〈 ′〉 runs over
pairs of nearest neighbor (n.n.) sites on the 2D square lattice. The
spin degrees of freedom have been ignored for simplicity. Next, tx
is the hopping amplitude for x-electrons and xϵ is the correspond-
ing on-site energy level. The sign of the product t txx ˜ determines
the type of semiconductor, for t t 0x x <˜ (t t 0x x >˜ ) we have the direct
(indirect) band gap semiconductor. The case t 0f ≡ corresponds to
that of the dispersionless f band and usual Falicov–Kimball model
[26] (FKM) could be derived (in this case, the local f-electron
number is conserved).

The on-site (local) interaction parameter U, in the last term of
the Hamiltonian in Eq. (1), is the Coulomb repulsion parameter
(interorbital) between the electrons in the f and c orbitals. As we
will see later on, the strength of the local Coulomb interaction will
tune the SM–SC transition in the system and the formation of the
local EI state in the excitonic system. In the case of the de-
generated f and c bands, i.e. when x xϵ = ϵ ˜ and t tx x= ˜ , the EFKM
model reduces to the standard Hubbard model [27]. Furthermore,
we adjust the chemical potentials xμ and xμ ˜ in order to maintain
separate the number of electrons in f and c orbitals. Then, the
equilibrium value of chemical potential x xμ μ μ≡ = ˜ in Eq. (1) will
be determined from the half-filling condition, i.e. we suppose that
n nr r 1x x〈 ( )〉 + 〈 ( )〉 =˜ . In what follows, we assume a band structure
with a direct band gap, i.e. t t 0x x <˜ and without the loss of gen-
erality the c electrons are considered to be “light”, while the f
electrons are “heavy”, i.e. t 1f < , and the hopping integral for c
electrons is taken to be the unit of the energy scale t 1c = .
Throughout the paper, we set k 1B = and 1= , and, the lattice
constant, d¼1. For frequency notations, we keep the symbol ν for
fermions andω for bosons. We set also 0cϵ = .

The genuine feature of the EFKM Hamiltonian in Eq. (1) is that
it is equivalent to the asymmetric Hubbard model, if we associate
for orbitals c and f the spin variables, thus replacing the fermionic
Hilbert space with the pseudo-fermionic one, and then by linear-
izing the interaction term via the bosonic states (see in Ref. [6]).

2.2. Hubbard–Stratanovich linearisation

It is more convenient to write the EFKM Hamiltonian given in
Eq. (1) in more symmetric form, suitable for the mean-field de-
coupling
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