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a b s t r a c t

The thermodynamic Bethe ansatz equations for the Coqblin–Schrieffer model have been solved for the
first time to obtain the magnetic susceptibility in the presence of crystal fields for non-zero tempera-
tures. For the case of N¼4 effective ionic states an analytic expression for the limiting values of the
pseudo-energies has been found facilitating the numerical solution for various crystal and magnetic field
configurations. The single-impurity model applies to a wide range of dense Kondo systems and has been
used before to explain apparent non-Fermi-liquid behavior. The flattening off of the susceptibility curves
at a substantially higher temperature than the specific heat is shown to be a general feature of the
Coqblin–Schrieffer thermodynamics.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

There is an increasing amount of experimental data on heavy
fermion compounds, showing a great variety in their behavior,
which is still far from being understood. One particular aspect that
deserves further clarification is the relative effects of the crystal
field and the Kondo scattering terms in the presence of magnetic
fields.

The single-impurity Kondo and Anderson models and their
generalizations to include orbital degeneracy serve as testing
grounds for methods that are aimed at the corresponding lattice
problems. The Bethe ansatz solutions to the impurity models in
turn provide benchmarks [1–5] for ground state and finite-tem-
perature thermodynamic quantities. The numerical solution to the
thermodynamic Bethe ansatz (TBA) equations is able to render the
full crossover between local-moment behavior at high tempera-
tures and Fermi-liquid behavior at low temperatures with rela-
tively little numerical effort.

On the experimental side there is on-going interest in the in-
terplay of crystal fields and the Kondo effect [6–10]. The experi-
mentalists’ analysis of the measured thermodynamic quantities
(for temperatures larger than a magnetic transition as the case
may be) has been performed essentially in two steps: The low
temperature behavior is fitted to the exact result for the spin-1/2
Kondo model [11]. Here the analytically available result for the

resonant level model may be taken as an approximation. The
higher temperature region is fitted by the Schottky curve for the
non-interacting crystal field Hamiltonian. Recently an attempt has
been made [12] to combine the resonant level and crystal field
approaches to cover the whole applicable temperature range.

On the theoretical side, the generalization of the single ion
Kondo model to a N-fold degenerate ionic configuration, the SU
(N) Coqblin–Schrieffer [13] model was solved by Bethe ansatz
more than 30 years ago [14]. An overview over the results for di-
lute mixed-valent and heavy-fermion systems derived from the
TBA equations is given in Ref. [15]. An alternative approach to the
solution of the Coqblin–Schrieffer model is presented in Ref. [16].
There, formulae are given for the calculation of weak field and low
temperature expansions of the free energy of the model. A broad
basis for comparison with experiments on the specific heat in zero
magnetic field over the whole temperature range has been pro-
vided recently by the numerical solution of the TBA equations for
the N¼6 model (Cerium 3þ ions) with general crystal field con-
figurations [17]. A new high field/low temperature expansion was
developed there to calculate the limiting values of the unknown
functions as a basis for the numerical solution.

An interesting aspect of the interplay between degeneracy and
crystal fields has been raised by Anders and Pruschke [18] who
studied the problem by the numerical renormalization group
method for the case of N¼4 and calculated specific heat and
magnetic susceptibility to analyze experimental data on
Ce1�xLaxNi9Ge4. These authors argue that the apparent non-Fer-
mi-liquid behavior can be explained by an extended crossover
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regime caused by the crystal field that leads to the flattening off of
the susceptibility curves at a substantially higher temperature
than the specific heat. Moreover, they claim that this holds only for
a narrow range of crystal field splittings.

In contrast to that assertion I show that this behavior is a
general feature of the Coqblin–Schrieffer model thermodynamics
for arbitrary crystal field splittings.

Following Anders and Pruschke I examine the case of N¼4 that
can hold as an approximation to the physical N¼6 (Ce 3þ ions) or
N¼8 (Yb 3þ ions) case when a low lying quartet or two low lying
doublets are separated from the higher multiplets so much that
the upper multiplets can be neglected in the low temperature
thermodynamics.

I consider three cases of crystal and magnetic field environ-
ments that are determined by crystal symmetry and the orienta-
tion of the magnetic field. When comparing with experiments the
value of the Landè factor g has to be taken as that of the full Hund’s
rule ionic configuration without crystal fields:

(a) An (effective) spin J¼3/2 ion in a uniaxial crystal field [19].
Without magnetic field the quartet is split into two doublets se-
parated by an energy difference Δ. The energy levels with mag-
netic field applied along the z-axis may be labeled from 1 to 4 and
are given by:
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(b) A Γ8 quartet (i.e. cubic environment) with tetragonal dis-
tortion [20] with the magnetic field applied along the fourfold
axis. The energy levels are given by:
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(c) A configuration considered in ref. [18] and [21] where the
relative g-factor grel between the two doublets is determined to fit
the experiments for Ce0.5La0.5Ni9Ge4 and is equal to √2. The en-
ergy levels are given by:
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The rest of this publication is organized as follows: In Section 2
the model is introduced and the TBA equations are formulated.
The results for the limiting values needed to solve these non-linear
integral equations are given in Section 3. An overview over the
numerical results on the magnetic susceptibility for high and low
temperatures is given in Section 4 exemplarily for case (a). From
these results the zero temperature values of the magnetic sus-
ceptibilities for the three cases considered are extracted and

shown as functions of the splitting Δ. In Section 5 results for re-
presentative values of the crystal field splittings are provided for
all three cases to compare with experimental data. The apparent
non-Fermi-liquid behavior is shown to be a general feature of the
Coqblin–Schrieffer thermodynamics. The behavior of the limiting
values of the unknown functions of the TBA equations at large
values of the equation index n is given in the Appendix.

2. Model and TBA equations

The Coqblin–Schrieffer Hamiltonian can be written in terms of
the N ionic crystal field states r| 〉 with energy levels Er and the usual
notation for conduction electron operators C k r,

† . The exchange
interaction is simply a permutation operator acting on the quan-
tum labels of the particles.
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For integrability of the model a linear dispersion of the con-
duction electron energy is assumed as well as the smallness of the
exchange coupling J independent of r. The Bethe ansatz solution
introduces an ad hoc cut-off D that enters the Kondo temperature
TK�D exp(-1/N|J|) in a non-universal way [11]. In the scaling limit
J -0, D-1, TK is kept fixed and is the only scale of the model
whose value may be fitted to the experiments.

In the language of the Anderson model the conditions on the
crystal fields reduce to the requirement that the size of the split-
tings Erþ1-Er be negligible compared to both the bare f-level po-
sition and the conduction-electron bandwidth. The splittings may
then be large or small compared with the Kondo temperature.

The thermodynamic properties of the model are calculated
from certain pseudo-energy functions εn(r)(λ), n¼1, 2,..., 1,
1rrrN-1 that are determined by the TBA equations [14] (with

r
0ε = − ∞( ) ):
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The free energy at temperature T is given by the following
expression:
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The thermodynamic properties depend only on the ratio T/TK
and on the external fields scaled by TK. The definition of the Kondo
temperature TK≡TK(N) used here connects it with the linear spe-
cific heat coefficient in the absence of all fields γ0¼C/T for T-0
through TK(N)¼(N-1)π/(3γ0).

By introducing g Tln 1 exp /n
r

n
rλ ε λ( ) ≡ { + [ ( ) ]}( ) ( ) Eq. (5) can be

written for nZ2 in the following form (with g gn n
N0 = ≡ ∞( ) ( ) ):
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